A Posteriori Error Estimates Based on the Polynomial Preserving Recovery

Superconvergence of order $O(h^{1+\rho})$, for some $\rho > 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2004-01, Vol.42 (4), p.1780-1800
Hauptverfasser: Naga, Ahmed, Zhang, Zhimin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1800
container_issue 4
container_start_page 1780
container_title SIAM journal on numerical analysis
container_volume 42
creator Naga, Ahmed
Zhang, Zhimin
description Superconvergence of order $O(h^{1+\rho})$, for some $\rho > 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.
doi_str_mv 10.1137/S0036142903413002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922275982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590346871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-8de42ddbc5383799088e43828ddaf5d0758903df164093e4035a1fe6ff9cc39a3</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEqHwANws7oG1ndT2sVSlRapExc85MvEaUqVxWaeV-vakKjdOo9V82tEMY7cC7oVQ-uENQI1FIS2oQigAecYyAbbMtdBwzrKjnR_9S3aV0hqG2wiVscWEr2LqkZpIDZ8RReKz1Dcb12Pijy6h57Hj_TcOXHvo4qZxLV8RJqR9033xV6zjHulwzS6CaxPe_OmIfTzN3qeLfPkyf55Olnkttexz47GQ3n_WpTJKWwvGYKGMNN67UHrQpRkq-CDGBViFBajSiYDjEGxdK-vUiN2d_m4p_uww9dU67qgbIisrpdSlNXKAxAmqKaZEGKotDZXoUAmojntV__ZSv84WXGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922275982</pqid></control><display><type>article</type><title>A Posteriori Error Estimates Based on the Polynomial Preserving Recovery</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Naga, Ahmed ; Zhang, Zhimin</creator><creatorcontrib>Naga, Ahmed ; Zhang, Zhimin</creatorcontrib><description>Superconvergence of order $O(h^{1+\rho})$, for some $\rho &gt; 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142903413002</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><ispartof>SIAM journal on numerical analysis, 2004-01, Vol.42 (4), p.1780-1800</ispartof><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-8de42ddbc5383799088e43828ddaf5d0758903df164093e4035a1fe6ff9cc39a3</citedby><cites>FETCH-LOGICAL-c272t-8de42ddbc5383799088e43828ddaf5d0758903df164093e4035a1fe6ff9cc39a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27922,27923</link.rule.ids></links><search><creatorcontrib>Naga, Ahmed</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><title>A Posteriori Error Estimates Based on the Polynomial Preserving Recovery</title><title>SIAM journal on numerical analysis</title><description>Superconvergence of order $O(h^{1+\rho})$, for some $\rho &gt; 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.</description><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkM1OwzAQhC0EEqHwANws7oG1ndT2sVSlRapExc85MvEaUqVxWaeV-vakKjdOo9V82tEMY7cC7oVQ-uENQI1FIS2oQigAecYyAbbMtdBwzrKjnR_9S3aV0hqG2wiVscWEr2LqkZpIDZ8RReKz1Dcb12Pijy6h57Hj_TcOXHvo4qZxLV8RJqR9033xV6zjHulwzS6CaxPe_OmIfTzN3qeLfPkyf55Olnkttexz47GQ3n_WpTJKWwvGYKGMNN67UHrQpRkq-CDGBViFBajSiYDjEGxdK-vUiN2d_m4p_uww9dU67qgbIisrpdSlNXKAxAmqKaZEGKotDZXoUAmojntV__ZSv84WXGs</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Naga, Ahmed</creator><creator>Zhang, Zhimin</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200401</creationdate><title>A Posteriori Error Estimates Based on the Polynomial Preserving Recovery</title><author>Naga, Ahmed ; Zhang, Zhimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-8de42ddbc5383799088e43828ddaf5d0758903df164093e4035a1fe6ff9cc39a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naga, Ahmed</creatorcontrib><creatorcontrib>Zhang, Zhimin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naga, Ahmed</au><au>Zhang, Zhimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Posteriori Error Estimates Based on the Polynomial Preserving Recovery</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2004-01</date><risdate>2004</risdate><volume>42</volume><issue>4</issue><spage>1780</spage><epage>1800</epage><pages>1780-1800</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Superconvergence of order $O(h^{1+\rho})$, for some $\rho &gt; 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142903413002</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2004-01, Vol.42 (4), p.1780-1800
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922275982
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title A Posteriori Error Estimates Based on the Polynomial Preserving Recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Posteriori%20Error%20Estimates%20Based%20on%20the%20Polynomial%20Preserving%20Recovery&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Naga,%20Ahmed&rft.date=2004-01&rft.volume=42&rft.issue=4&rft.spage=1780&rft.epage=1800&rft.pages=1780-1800&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/S0036142903413002&rft_dat=%3Cproquest_cross%3E2590346871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922275982&rft_id=info:pmid/&rfr_iscdi=true