A Posteriori Error Estimates Based on the Polynomial Preserving Recovery
Superconvergence of order $O(h^{1+\rho})$, for some $\rho > 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error e...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2004-01, Vol.42 (4), p.1780-1800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconvergence of order $O(h^{1+\rho})$, for some $\rho > 0$, is established for the gradient recovered with the polynomial preserving recovery (PPR) when the mesh is mildly structured. Consequently, the PPR-recovered gradient can be used in building an asymptotically exact a posteriori error estimator. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/S0036142903413002 |