Reconstruction of Closely Spaced Small Inclusions

In this paper we establish an explicit asymptotic formula for the steady state voltage perturbations caused by closely spaced small conductivity inhomogeneities. Based on this new formula we design a very effective numerical method to identify the location and some geometric features of these inhomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2005-01, Vol.42 (6), p.2408-2428
Hauptverfasser: Ammari, Habib, Kang, Hyeonbae, Eunjoo Kim, Mikyoung Lim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2428
container_issue 6
container_start_page 2408
container_title SIAM journal on numerical analysis
container_volume 42
creator Ammari, Habib
Kang, Hyeonbae
Eunjoo Kim
Mikyoung Lim
description In this paper we establish an explicit asymptotic formula for the steady state voltage perturbations caused by closely spaced small conductivity inhomogeneities. Based on this new formula we design a very effective numerical method to identify the location and some geometric features of these inhomogeneities from a finite number of boundary measurements. The viability of our approach is documented by numerical examples.
doi_str_mv 10.1137/s0036142903422752
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922268812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4101347</jstor_id><sourcerecordid>4101347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-dc1d6afe769fb08ae58bb80ac3003829c6919915c41e5217ac0ee197bb4230443</originalsourceid><addsrcrecordid>eNpdkF9LwzAUxYMoOKcfQPChCD5Wc5M0fx5lOB0MBKfPJU1T6Miamds-7NvbsqHg0-VyfuccOITcAn0E4OoJKeUSBDOUC8ZUwc7IDKgpcgWKnpPZJOeTfkmuELd0_DXwGYEP72KHfRpc38Yui022CBF9OGSbvXW-zjY7G0K26lwYcCTwmlw0NqC_Od05-Vq-fC7e8vX762rxvM4d16bPawe1tI1X0jQV1dYXuqo0tY5P1cw4acAYKJwAXzBQ1lHvwaiqEoxTIfic3B9z9yl-Dx77chuH1I2VpWGMSa2BjRAcIZciYvJNuU_tzqZDCbSchik3_4cZPQ-nYIvOhibZzrX4Z1ScSS6Lkbs7clvsY_rVBVDgQvEfPZ5qKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922268812</pqid></control><display><type>article</type><title>Reconstruction of Closely Spaced Small Inclusions</title><source>SIAM Journals Online</source><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Ammari, Habib ; Kang, Hyeonbae ; Eunjoo Kim ; Mikyoung Lim</creator><creatorcontrib>Ammari, Habib ; Kang, Hyeonbae ; Eunjoo Kim ; Mikyoung Lim</creatorcontrib><description>In this paper we establish an explicit asymptotic formula for the steady state voltage perturbations caused by closely spaced small conductivity inhomogeneities. Based on this new formula we design a very effective numerical method to identify the location and some geometric features of these inhomogeneities from a finite number of boundary measurements. The viability of our approach is documented by numerical examples.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/s0036142903422752</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Conductivity ; Differential equations ; Eigenvalues ; Electric potential ; Ellipses ; Exact sciences and technology ; Harmonic functions ; Inhomogeneity ; Inverse problems ; Mathematical analysis ; Mathematics ; Numerical analysis ; Partial differential equations ; Sciences and techniques of general use ; Tensors</subject><ispartof>SIAM journal on numerical analysis, 2005-01, Vol.42 (6), p.2408-2428</ispartof><rights>Copyright 2005 Society for Industrial and Applied Mathematics</rights><rights>2006 INIST-CNRS</rights><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-dc1d6afe769fb08ae58bb80ac3003829c6919915c41e5217ac0ee197bb4230443</citedby><cites>FETCH-LOGICAL-c389t-dc1d6afe769fb08ae58bb80ac3003829c6919915c41e5217ac0ee197bb4230443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4101347$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4101347$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,4010,27900,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17326365$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ammari, Habib</creatorcontrib><creatorcontrib>Kang, Hyeonbae</creatorcontrib><creatorcontrib>Eunjoo Kim</creatorcontrib><creatorcontrib>Mikyoung Lim</creatorcontrib><title>Reconstruction of Closely Spaced Small Inclusions</title><title>SIAM journal on numerical analysis</title><description>In this paper we establish an explicit asymptotic formula for the steady state voltage perturbations caused by closely spaced small conductivity inhomogeneities. Based on this new formula we design a very effective numerical method to identify the location and some geometric features of these inhomogeneities from a finite number of boundary measurements. The viability of our approach is documented by numerical examples.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Conductivity</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Electric potential</subject><subject>Ellipses</subject><subject>Exact sciences and technology</subject><subject>Harmonic functions</subject><subject>Inhomogeneity</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Tensors</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkF9LwzAUxYMoOKcfQPChCD5Wc5M0fx5lOB0MBKfPJU1T6Miamds-7NvbsqHg0-VyfuccOITcAn0E4OoJKeUSBDOUC8ZUwc7IDKgpcgWKnpPZJOeTfkmuELd0_DXwGYEP72KHfRpc38Yui022CBF9OGSbvXW-zjY7G0K26lwYcCTwmlw0NqC_Od05-Vq-fC7e8vX762rxvM4d16bPawe1tI1X0jQV1dYXuqo0tY5P1cw4acAYKJwAXzBQ1lHvwaiqEoxTIfic3B9z9yl-Dx77chuH1I2VpWGMSa2BjRAcIZciYvJNuU_tzqZDCbSchik3_4cZPQ-nYIvOhibZzrX4Z1ScSS6Lkbs7clvsY_rVBVDgQvEfPZ5qKg</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Ammari, Habib</creator><creator>Kang, Hyeonbae</creator><creator>Eunjoo Kim</creator><creator>Mikyoung Lim</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20050101</creationdate><title>Reconstruction of Closely Spaced Small Inclusions</title><author>Ammari, Habib ; Kang, Hyeonbae ; Eunjoo Kim ; Mikyoung Lim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-dc1d6afe769fb08ae58bb80ac3003829c6919915c41e5217ac0ee197bb4230443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Conductivity</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Electric potential</topic><topic>Ellipses</topic><topic>Exact sciences and technology</topic><topic>Harmonic functions</topic><topic>Inhomogeneity</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ammari, Habib</creatorcontrib><creatorcontrib>Kang, Hyeonbae</creatorcontrib><creatorcontrib>Eunjoo Kim</creatorcontrib><creatorcontrib>Mikyoung Lim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ammari, Habib</au><au>Kang, Hyeonbae</au><au>Eunjoo Kim</au><au>Mikyoung Lim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of Closely Spaced Small Inclusions</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>42</volume><issue>6</issue><spage>2408</spage><epage>2428</epage><pages>2408-2428</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>In this paper we establish an explicit asymptotic formula for the steady state voltage perturbations caused by closely spaced small conductivity inhomogeneities. Based on this new formula we design a very effective numerical method to identify the location and some geometric features of these inhomogeneities from a finite number of boundary measurements. The viability of our approach is documented by numerical examples.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/s0036142903422752</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2005-01, Vol.42 (6), p.2408-2428
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922268812
source SIAM Journals Online; Jstor Complete Legacy; JSTOR Mathematics & Statistics
subjects Algorithms
Applied mathematics
Conductivity
Differential equations
Eigenvalues
Electric potential
Ellipses
Exact sciences and technology
Harmonic functions
Inhomogeneity
Inverse problems
Mathematical analysis
Mathematics
Numerical analysis
Partial differential equations
Sciences and techniques of general use
Tensors
title Reconstruction of Closely Spaced Small Inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20Closely%20Spaced%20Small%20Inclusions&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Ammari,%20Habib&rft.date=2005-01-01&rft.volume=42&rft.issue=6&rft.spage=2408&rft.epage=2428&rft.pages=2408-2428&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/s0036142903422752&rft_dat=%3Cjstor_proqu%3E4101347%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922268812&rft_id=info:pmid/&rft_jstor_id=4101347&rfr_iscdi=true