Convergence of Numerical Approximations of the Incompressible Navier-Stokes Equations with Variable Density and Viscosity

We consider numerical approximations of incompressible Newtonian fluids having variable, possibly discontinuous, density and viscosity. Since solutions of the equations with variable density and viscosity may not be unique, numerical schemes may not converge. If the solution is unique, then approxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2007-01, Vol.45 (3), p.1287-1304
Hauptverfasser: Liu, Chun, Walkington, Noel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider numerical approximations of incompressible Newtonian fluids having variable, possibly discontinuous, density and viscosity. Since solutions of the equations with variable density and viscosity may not be unique, numerical schemes may not converge. If the solution is unique, then approximate solutions computed using the discontinuous Galerkin method to approximate the convection of the density and stable finite element approximations of the momentum equation converge to the solution. If the solution is not unique, a subsequence of these approximate solutions will converge to a solution.
ISSN:0036-1429
1095-7170
DOI:10.1137/050629008