Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation

We consider the three-dimensional elastic wave equation for an isotropic heterogeneous material subject to a stress-free boundary condition. Building on our recently developed theory for difference methods for second order hyperbolic systems [H.-O. Kreiss, N. A. Petersson, J. Yström, SIAM J. Numer....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2007-01, Vol.45 (5), p.1902-1936
Hauptverfasser: Nilsson, Stefan, Petersson, N. Anders, Sjögreen, Björn, Kreiss, Heinz-Otto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the three-dimensional elastic wave equation for an isotropic heterogeneous material subject to a stress-free boundary condition. Building on our recently developed theory for difference methods for second order hyperbolic systems [H.-O. Kreiss, N. A. Petersson, J. Yström, SIAM J. Numer. Anal., 40 (2002), pp. 1940- 1967], we develop an explicit, second order accurate technique which is stable for all ratios of longitudinal over transverse phase velocities. The spatial discretization is self-adjoint, and the stability is obtained through an energy estimate. Seismic events are often modeled using singular source terms, and we devise a technique to place sources independently of the grid while retaining second order accuracy away from the source. Several numerical examples are given.
ISSN:0036-1429
1095-7170
DOI:10.1137/060663520