Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation
We consider the three-dimensional elastic wave equation for an isotropic heterogeneous material subject to a stress-free boundary condition. Building on our recently developed theory for difference methods for second order hyperbolic systems [H.-O. Kreiss, N. A. Petersson, J. Yström, SIAM J. Numer....
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2007-01, Vol.45 (5), p.1902-1936 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the three-dimensional elastic wave equation for an isotropic heterogeneous material subject to a stress-free boundary condition. Building on our recently developed theory for difference methods for second order hyperbolic systems [H.-O. Kreiss, N. A. Petersson, J. Yström, SIAM J. Numer. Anal., 40 (2002), pp. 1940- 1967], we develop an explicit, second order accurate technique which is stable for all ratios of longitudinal over transverse phase velocities. The spatial discretization is self-adjoint, and the stability is obtained through an energy estimate. Seismic events are often modeled using singular source terms, and we devise a technique to place sources independently of the grid while retaining second order accuracy away from the source. Several numerical examples are given. |
---|---|
ISSN: | 0036-1429 1095-7170 |
DOI: | 10.1137/060663520 |