COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS

New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2008-01, Vol.46 (5), p.2505-2523
Hauptverfasser: HALE, NICHOLAS, HIGHAM, NICHOLAS J., TREFETHEN, LLOYD N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2523
container_issue 5
container_start_page 2505
container_title SIAM journal on numerical analysis
container_volume 46
creator HALE, NICHOLAS
HIGHAM, NICHOLAS J.
TREFETHEN, LLOYD N.
description New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the computation of f(A)b is typically reduced to one or two dozen linear system solves, which can be carried out in parallel.
doi_str_mv 10.1137/070700607
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922166860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25663073</jstor_id><sourcerecordid>25663073</sourcerecordid><originalsourceid>FETCH-LOGICAL-j134t-23681aac114ea03a8467418a1f141a0a21941f239f4860e1ea315758236277023</originalsourceid><addsrcrecordid>eNotjcFKw0AYhBdRMFYPPoCweFJo9P93N7vJcZumMZImkm5AT2GRRAzV1CQ9-Fi-iM9koDKHYeCbGUIuEe4QuboHNQkkqCPiIASeq1DBMXEAuHRRsOCUnA1DC1P2kTvkMczXT6VJspjq35853XZvN1TT2znV2ZIWUapNtKRrbYrkma7KLDRJnm3o4oWGeWbysqBJZqK40OnmnJw0djvUF_8-I-UqMuGDm-ZxEurUbZGL0WVc-mjtK6KoLXDrC6kE-hYbFGjBMgwENowHjfAl1Fhbjp7y_KnHlALGZ-T6sLvru699PYxV2-37z-myChhDKafaBF0doHYYu77a9e8ftv-umCclB8X5H11cTdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922166860</pqid></control><display><type>article</type><title>COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>HALE, NICHOLAS ; HIGHAM, NICHOLAS J. ; TREFETHEN, LLOYD N.</creator><creatorcontrib>HALE, NICHOLAS ; HIGHAM, NICHOLAS J. ; TREFETHEN, LLOYD N.</creatorcontrib><description>New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the computation of f(A)b is typically reduced to one or two dozen linear system solves, which can be carried out in parallel.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/070700607</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Eigenvalues ; Elliptic functions ; Integrals ; Mathematical functions ; Mathematical integrals ; Matrices ; Methods ; Perceptron convergence procedure ; Rectangles ; Trapezoidal rule</subject><ispartof>SIAM journal on numerical analysis, 2008-01, Vol.46 (5), p.2505-2523</ispartof><rights>Copyright ©2009 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25663073$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25663073$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>HALE, NICHOLAS</creatorcontrib><creatorcontrib>HIGHAM, NICHOLAS J.</creatorcontrib><creatorcontrib>TREFETHEN, LLOYD N.</creatorcontrib><title>COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS</title><title>SIAM journal on numerical analysis</title><description>New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the computation of f(A)b is typically reduced to one or two dozen linear system solves, which can be carried out in parallel.</description><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Elliptic functions</subject><subject>Integrals</subject><subject>Mathematical functions</subject><subject>Mathematical integrals</subject><subject>Matrices</subject><subject>Methods</subject><subject>Perceptron convergence procedure</subject><subject>Rectangles</subject><subject>Trapezoidal rule</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotjcFKw0AYhBdRMFYPPoCweFJo9P93N7vJcZumMZImkm5AT2GRRAzV1CQ9-Fi-iM9koDKHYeCbGUIuEe4QuboHNQkkqCPiIASeq1DBMXEAuHRRsOCUnA1DC1P2kTvkMczXT6VJspjq35853XZvN1TT2znV2ZIWUapNtKRrbYrkma7KLDRJnm3o4oWGeWbysqBJZqK40OnmnJw0djvUF_8-I-UqMuGDm-ZxEurUbZGL0WVc-mjtK6KoLXDrC6kE-hYbFGjBMgwENowHjfAl1Fhbjp7y_KnHlALGZ-T6sLvru699PYxV2-37z-myChhDKafaBF0doHYYu77a9e8ftv-umCclB8X5H11cTdo</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>HALE, NICHOLAS</creator><creator>HIGHAM, NICHOLAS J.</creator><creator>TREFETHEN, LLOYD N.</creator><general>Society for Industrial and Applied Mathematics</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080101</creationdate><title>COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS</title><author>HALE, NICHOLAS ; HIGHAM, NICHOLAS J. ; TREFETHEN, LLOYD N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j134t-23681aac114ea03a8467418a1f141a0a21941f239f4860e1ea315758236277023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Elliptic functions</topic><topic>Integrals</topic><topic>Mathematical functions</topic><topic>Mathematical integrals</topic><topic>Matrices</topic><topic>Methods</topic><topic>Perceptron convergence procedure</topic><topic>Rectangles</topic><topic>Trapezoidal rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HALE, NICHOLAS</creatorcontrib><creatorcontrib>HIGHAM, NICHOLAS J.</creatorcontrib><creatorcontrib>TREFETHEN, LLOYD N.</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HALE, NICHOLAS</au><au>HIGHAM, NICHOLAS J.</au><au>TREFETHEN, LLOYD N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>46</volume><issue>5</issue><spage>2505</spage><epage>2523</epage><pages>2505-2523</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the computation of f(A)b is typically reduced to one or two dozen linear system solves, which can be carried out in parallel.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070700607</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2008-01, Vol.46 (5), p.2505-2523
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922166860
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Approximation
Eigenvalues
Elliptic functions
Integrals
Mathematical functions
Mathematical integrals
Matrices
Methods
Perceptron convergence procedure
Rectangles
Trapezoidal rule
title COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A36%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPUTING%20A%CE%B1,%20log(%20A%20),%20AND%20RELATED%20MATRIX%20FUNCTIONS%20BY%20CONTOUR%20INTEGRALS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=HALE,%20NICHOLAS&rft.date=2008-01-01&rft.volume=46&rft.issue=5&rft.spage=2505&rft.epage=2523&rft.pages=2505-2523&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/070700607&rft_dat=%3Cjstor_proqu%3E25663073%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922166860&rft_id=info:pmid/&rft_jstor_id=25663073&rfr_iscdi=true