COMPUTING Aα, log( A ), AND RELATED MATRIX FUNCTIONS BY CONTOUR INTEGRALS

New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2008-01, Vol.46 (5), p.2505-2523
Hauptverfasser: HALE, NICHOLAS, HIGHAM, NICHOLAS J., TREFETHEN, LLOYD N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New methods are proposed for the numerical evaluation of f(A) or f(A)b, where f(A) is a function such as A 1/2 or log(A) with singularities in (—∞, 0] and A is a matrix with eigenvalues on or near (0, ∞). The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the computation of f(A)b is typically reduced to one or two dozen linear system solves, which can be carried out in parallel.
ISSN:0036-1429
1095-7170
DOI:10.1137/070700607