Iterative methods for total variation denoising

Total variation (TV) methods are very effective for recovering "blocky," possibly discontinuous, images from noisy data. A fixed point algorithm for minimizing a TV penalized least squares functional is presented and compared with existing minimization schemes. A variant of the cell-center...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM Journal on Scientific Computing 1996, Vol.17 (1), p.227-238
Hauptverfasser: VOGEL, C. R, OMAN, M. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Total variation (TV) methods are very effective for recovering "blocky," possibly discontinuous, images from noisy data. A fixed point algorithm for minimizing a TV penalized least squares functional is presented and compared with existing minimization schemes. A variant of the cell-centered finite difference multigrid method of Ewing and Shen is implemented for solving the (large, sparse) linear subproblems. Numerical results are presented for one- and two-dimensional examples; in particular, the algorithm is applied to actual data obtained from confocal microscopy.
ISSN:1064-8275
1095-7197
DOI:10.1137/0917016