The Procrustes Problem for Orthogonal Stiefel Matrices

In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. Given matrices ${\cal A}\in {\Bbb R}^{m\times k},$ ${\cal B}\in {\Bbb R}^{m\times p},$ $m\ge p \ge k,$ we seek the minimum of $\|{\cal A}-{\cal B}Q\|^2$ for all matrices $Q\in {\Bbb R}^{p\times k},$ $Q^T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 1999-01, Vol.21 (4), p.1291-1304
Hauptverfasser: Bojanczyk, A. W., Lutoborski, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. Given matrices ${\cal A}\in {\Bbb R}^{m\times k},$ ${\cal B}\in {\Bbb R}^{m\times p},$ $m\ge p \ge k,$ we seek the minimum of $\|{\cal A}-{\cal B}Q\|^2$ for all matrices $Q\in {\Bbb R}^{p\times k},$ $Q^TQ=I_{k\times k}$. We introduce a class of relaxation methods for generating sequences of approximations to a minimizer and offer a geometric interpretation of these methods. Results of numerical experiments illustrating the convergence of the methods are given.
ISSN:1064-8275
1095-7197
DOI:10.1137/S106482759630992X