The Procrustes Problem for Orthogonal Stiefel Matrices
In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. Given matrices ${\cal A}\in {\Bbb R}^{m\times k},$ ${\cal B}\in {\Bbb R}^{m\times p},$ $m\ge p \ge k,$ we seek the minimum of $\|{\cal A}-{\cal B}Q\|^2$ for all matrices $Q\in {\Bbb R}^{p\times k},$ $Q^T...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 1999-01, Vol.21 (4), p.1291-1304 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. Given matrices ${\cal A}\in {\Bbb R}^{m\times k},$ ${\cal B}\in {\Bbb R}^{m\times p},$ $m\ge p \ge k,$ we seek the minimum of $\|{\cal A}-{\cal B}Q\|^2$ for all matrices $Q\in {\Bbb R}^{p\times k},$ $Q^TQ=I_{k\times k}$. We introduce a class of relaxation methods for generating sequences of approximations to a minimizer and offer a geometric interpretation of these methods. Results of numerical experiments illustrating the convergence of the methods are given. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/S106482759630992X |