A comparison of algebraic multigrid and geometric immersed interface multigrid methods for interface problems
In [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463--479], a multigrid method was designed specifically for interface problems that have been discretized using the methods described in [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463--479] and in [Z. Li and K. Ito, SIAM J....
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2005, Vol.26 (3), p.762-784 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463--479], a multigrid method was designed specifically for interface problems that have been discretized using the methods described in [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463--479] and in [Z. Li and K. Ito, SIAM J. Sci. Comput., 23 (2001), pp. 339--361] for elliptic interface problems using the maximum principle preserving schemes. In [L. Adams and T. P. Chartier, SIAM J. Sci. Comput., 25 (2002), pp. 1516--1533], a new method was introduced that utilizes a new interpolator for grid points near the immersed interface and a new restrictor that guarantees the coarse-grid matrices are M-matrices. This paper compares the immersed interface multigrid methods introduced in [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463--479] and [L. Adams and T. P. Chartier, SIAM J. Sci. Comput., 25 (2002), pp. 1516--1533] with algebraic multigrid, which uses no geometric information to set up the multigrid components for coarse-grid correction. We show that algebraic multigrid is a robust solver for our test problems. It outperforms the method in [L. Adams and Z. Li, SIAM J. Sci. Comput., 24 (2002), pp. 463--479] and performs nearly as well as the method in [L. Adams and T. P. Chartier, SIAM J. Sci. Comput., 25 (2002), pp. 1516--1533] which is shown to be the most efficient for all problem parameters and sizes. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/S1064827503425262 |