A novel multigrid based preconditioner for heterogeneous helmholtz problems

An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2006, Vol.27 (4), p.1471-1492
Hauptverfasser: ERLANGGA, Y. A, OOSTERLEE, C. W, VUIK, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1492
container_issue 4
container_start_page 1471
container_title SIAM journal on scientific computing
container_volume 27
creator ERLANGGA, Y. A
OOSTERLEE, C. W
VUIK, C
description An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by numerical experiments. High wavenumber Helmholtz problems in heterogeneous media are solved indicating the performance of the preconditioner.
doi_str_mv 10.1137/040615195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921166541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584553061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-4ac836263cfb7574eee68043a61ff345f808ec6856456580107f4f4f1e4338b23</originalsourceid><addsrcrecordid>eNpFkE9Lw0AQxRdRsFYPfoMgePAQ3cn-zbEUq2LBi57DZjvbpiTZupsI-und0qLMYebBb96DR8g10HsAph4opxIElOKETICWIldQqtP9LXmuCyXOyUWMW0pB8rKYkNdZ1vsvbLNubIdmHZpVVpuIq2wX0Pp-1QyN7zFkzodsgwMGv8Ye_RiTaruNb4efhPq6xS5ekjNn2ohXxz0lH4vH9_lzvnx7epnPlrllBQw5N1YzWUhmXa2E4ogoNeXMSHCOceE01WilFpILKTQFqhxPA8gZ03XBpuTm4JuCP0eMQ7X1Y-hTZFUWAFIKDgm6O0A2-BgDumoXms6E7wpota-q-qsqsbdHQxOtaV0wvW3i_4MqQUiq2C_6UGc-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921166541</pqid></control><display><type>article</type><title>A novel multigrid based preconditioner for heterogeneous helmholtz problems</title><source>SIAM Journals Online</source><creator>ERLANGGA, Y. A ; OOSTERLEE, C. W ; VUIK, C</creator><creatorcontrib>ERLANGGA, Y. A ; OOSTERLEE, C. W ; VUIK, C</creatorcontrib><description>An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by numerical experiments. High wavenumber Helmholtz problems in heterogeneous media are solved indicating the performance of the preconditioner.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/040615195</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Acoustics ; Aeroacoustics, atmospheric sound ; Boundary conditions ; Classical and quantum physics: mechanics and fields ; Eigenvalues ; Exact sciences and technology ; Fourier analysis ; Fundamental areas of phenomenology (including applications) ; General theory of scattering ; Helmholtz equations ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Physics ; Radiation ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2006, Vol.27 (4), p.1471-1492</ispartof><rights>2006 INIST-CNRS</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-4ac836263cfb7574eee68043a61ff345f808ec6856456580107f4f4f1e4338b23</citedby><cites>FETCH-LOGICAL-c321t-4ac836263cfb7574eee68043a61ff345f808ec6856456580107f4f4f1e4338b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17915607$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ERLANGGA, Y. A</creatorcontrib><creatorcontrib>OOSTERLEE, C. W</creatorcontrib><creatorcontrib>VUIK, C</creatorcontrib><title>A novel multigrid based preconditioner for heterogeneous helmholtz problems</title><title>SIAM journal on scientific computing</title><description>An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by numerical experiments. High wavenumber Helmholtz problems in heterogeneous media are solved indicating the performance of the preconditioner.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Boundary conditions</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory of scattering</subject><subject>Helmholtz equations</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Physics</subject><subject>Radiation</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkE9Lw0AQxRdRsFYPfoMgePAQ3cn-zbEUq2LBi57DZjvbpiTZupsI-und0qLMYebBb96DR8g10HsAph4opxIElOKETICWIldQqtP9LXmuCyXOyUWMW0pB8rKYkNdZ1vsvbLNubIdmHZpVVpuIq2wX0Pp-1QyN7zFkzodsgwMGv8Ye_RiTaruNb4efhPq6xS5ekjNn2ohXxz0lH4vH9_lzvnx7epnPlrllBQw5N1YzWUhmXa2E4ogoNeXMSHCOceE01WilFpILKTQFqhxPA8gZ03XBpuTm4JuCP0eMQ7X1Y-hTZFUWAFIKDgm6O0A2-BgDumoXms6E7wpota-q-qsqsbdHQxOtaV0wvW3i_4MqQUiq2C_6UGc-</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>ERLANGGA, Y. A</creator><creator>OOSTERLEE, C. W</creator><creator>VUIK, C</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2006</creationdate><title>A novel multigrid based preconditioner for heterogeneous helmholtz problems</title><author>ERLANGGA, Y. A ; OOSTERLEE, C. W ; VUIK, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-4ac836263cfb7574eee68043a61ff345f808ec6856456580107f4f4f1e4338b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Boundary conditions</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory of scattering</topic><topic>Helmholtz equations</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Physics</topic><topic>Radiation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ERLANGGA, Y. A</creatorcontrib><creatorcontrib>OOSTERLEE, C. W</creatorcontrib><creatorcontrib>VUIK, C</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ERLANGGA, Y. A</au><au>OOSTERLEE, C. W</au><au>VUIK, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel multigrid based preconditioner for heterogeneous helmholtz problems</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2006</date><risdate>2006</risdate><volume>27</volume><issue>4</issue><spage>1471</spage><epage>1492</epage><pages>1471-1492</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by numerical experiments. High wavenumber Helmholtz problems in heterogeneous media are solved indicating the performance of the preconditioner.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040615195</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2006, Vol.27 (4), p.1471-1492
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921166541
source SIAM Journals Online
subjects Accuracy
Acoustics
Aeroacoustics, atmospheric sound
Boundary conditions
Classical and quantum physics: mechanics and fields
Eigenvalues
Exact sciences and technology
Fourier analysis
Fundamental areas of phenomenology (including applications)
General theory of scattering
Helmholtz equations
Mathematics
Methods
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations, boundary value problems
Physics
Radiation
Sciences and techniques of general use
title A novel multigrid based preconditioner for heterogeneous helmholtz problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20multigrid%20based%20preconditioner%20for%20heterogeneous%20helmholtz%20problems&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=ERLANGGA,%20Y.%20A&rft.date=2006&rft.volume=27&rft.issue=4&rft.spage=1471&rft.epage=1492&rft.pages=1471-1492&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/040615195&rft_dat=%3Cproquest_cross%3E2584553061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921166541&rft_id=info:pmid/&rfr_iscdi=true