A novel multigrid based preconditioner for heterogeneous helmholtz problems
An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2006, Vol.27 (4), p.1471-1492 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An iterative solution method, in the form of a preconditioner for a Krylov subspace method, is presented for the Helmholtz equation. The preconditioner is based on a Helmholtz-type differential operator with a complex term. A multigrid iteration is used for approximately inverting the preconditioner. The choice of multigrid components for the corresponding preconditioning matrix with a complex diagonal is validated with Fourier analysis. Multigrid analysis results are verified by numerical experiments. High wavenumber Helmholtz problems in heterogeneous media are solved indicating the performance of the preconditioner. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/040615195 |