Fast and Oblivious Convolution Quadrature

We give an algorithm to compute $N$ steps of a convolution quadrature approximation to a continuous temporal convolution using only $O(N\, \log N)$ multiplications and $O(\log N)$ active memory. The method does not require evaluations of the convolution kernel but instead uses $O(\log N)$ evaluation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2006-01, Vol.28 (2), p.421-438
Hauptverfasser: Schädle, Achim, López-Fernández, María, Lubich, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an algorithm to compute $N$ steps of a convolution quadrature approximation to a continuous temporal convolution using only $O(N\, \log N)$ multiplications and $O(\log N)$ active memory. The method does not require evaluations of the convolution kernel but instead uses $O(\log N)$ evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the stable numerical solution with quasi-optimal complexity of linear and nonlinear integral and integro-differential equations of convolution type. In a numerical example we apply it to solve a subdiffusion equation with transparent boundary conditions.
ISSN:1064-8275
1095-7197
DOI:10.1137/050623139