Fast and Oblivious Convolution Quadrature
We give an algorithm to compute $N$ steps of a convolution quadrature approximation to a continuous temporal convolution using only $O(N\, \log N)$ multiplications and $O(\log N)$ active memory. The method does not require evaluations of the convolution kernel but instead uses $O(\log N)$ evaluation...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2006-01, Vol.28 (2), p.421-438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an algorithm to compute $N$ steps of a convolution quadrature approximation to a continuous temporal convolution using only $O(N\, \log N)$ multiplications and $O(\log N)$ active memory. The method does not require evaluations of the convolution kernel but instead uses $O(\log N)$ evaluations of its Laplace transform, which is assumed sectorial. The algorithm can be used for the stable numerical solution with quasi-optimal complexity of linear and nonlinear integral and integro-differential equations of convolution type. In a numerical example we apply it to solve a subdiffusion equation with transparent boundary conditions. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/050623139 |