Computing Transfer Function Dominant Poles of Large-Scale Second-Order Dynamical Systems

A new algorithm for the computation of dominant poles of transfer functions of large-scale second-order dynamical systems is presented: the quadratic dominant pole algorithm (QDPA). The algorithm works directly with the system matrices of the original system, so no linearization is needed. To improv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2008-01, Vol.30 (4), p.2137-2157
Hauptverfasser: Rommes, Joost, Martins, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new algorithm for the computation of dominant poles of transfer functions of large-scale second-order dynamical systems is presented: the quadratic dominant pole algorithm (QDPA). The algorithm works directly with the system matrices of the original system, so no linearization is needed. To improve global convergence, the QDPA uses subspace acceleration, and deflation of found dominant poles is implemented in a very efficient way. The dominant poles and corresponding eigenvectors can be used to construct structure-preserving modal approximations and also to improve reduced-order models computed by Krylov subspace methods, as is illustrated by numerical results.
ISSN:1064-8275
1095-7197
DOI:10.1137/070684562