On nonlinear functions of linear combinations
Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, gi...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific and statistical computing 1984-03, Vol.5 (1), p.175-191 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 1 |
container_start_page | 175 |
container_title | SIAM journal on scientific and statistical computing |
container_volume | 5 |
creator | DIACONIS, P MEHRDAD SHAHSHAHANI |
description | Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation. |
doi_str_mv | 10.1137/0905013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921010867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583635441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWKv4F4oIrqrvNW2aLGXwCwZmo-vwmibQoZOMyXThv7fjFFcXLodz4TJ2i_CIyNsnUNAA8jOWVShkyWtsz1kGqETZVFBfsquUtgAcG1VnrNz4wgc_Dt5SLNzkzWEIPhXBFUtnwq4bPP3V1-zC0ZjszZI5-3p9-Vy9l-vN28fqeV0ajnAoRe16iWhbMLKvFPUCjGqw7QxJEi1HicJRxzsrpVFkqMO-7vvGVmQNiJrn7O7k3cfwPdl00NswRT9PalUhIMjZkrOHE2RiSClap_dx2FH80Qj6eIVerpjJ-0VHydDoInkzpH9cVUcM-S_i6Vvq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921010867</pqid></control><display><type>article</type><title>On nonlinear functions of linear combinations</title><source>SIAM Journals Online</source><creator>DIACONIS, P ; MEHRDAD SHAHSHAHANI</creator><creatorcontrib>DIACONIS, P ; MEHRDAD SHAHSHAHANI</creatorcontrib><description>Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.</description><identifier>ISSN: 0196-5204</identifier><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 2168-3417</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0905013</identifier><identifier>CODEN: SIJCD4</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Polynomials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific and statistical computing, 1984-03, Vol.5 (1), p.175-191</ispartof><rights>1985 INIST-CNRS</rights><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</citedby><cites>FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9205011$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DIACONIS, P</creatorcontrib><creatorcontrib>MEHRDAD SHAHSHAHANI</creatorcontrib><title>On nonlinear functions of linear combinations</title><title>SIAM journal on scientific and statistical computing</title><description>Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0196-5204</issn><issn>1064-8275</issn><issn>2168-3417</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LxDAURYMoWKv4F4oIrqrvNW2aLGXwCwZmo-vwmibQoZOMyXThv7fjFFcXLodz4TJ2i_CIyNsnUNAA8jOWVShkyWtsz1kGqETZVFBfsquUtgAcG1VnrNz4wgc_Dt5SLNzkzWEIPhXBFUtnwq4bPP3V1-zC0ZjszZI5-3p9-Vy9l-vN28fqeV0ajnAoRe16iWhbMLKvFPUCjGqw7QxJEi1HicJRxzsrpVFkqMO-7vvGVmQNiJrn7O7k3cfwPdl00NswRT9PalUhIMjZkrOHE2RiSClap_dx2FH80Qj6eIVerpjJ-0VHydDoInkzpH9cVUcM-S_i6Vvq</recordid><startdate>19840301</startdate><enddate>19840301</enddate><creator>DIACONIS, P</creator><creator>MEHRDAD SHAHSHAHANI</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19840301</creationdate><title>On nonlinear functions of linear combinations</title><author>DIACONIS, P ; MEHRDAD SHAHSHAHANI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DIACONIS, P</creatorcontrib><creatorcontrib>MEHRDAD SHAHSHAHANI</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific and statistical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DIACONIS, P</au><au>MEHRDAD SHAHSHAHANI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On nonlinear functions of linear combinations</atitle><jtitle>SIAM journal on scientific and statistical computing</jtitle><date>1984-03-01</date><risdate>1984</risdate><volume>5</volume><issue>1</issue><spage>175</spage><epage>191</epage><pages>175-191</pages><issn>0196-5204</issn><issn>1064-8275</issn><eissn>2168-3417</eissn><eissn>1095-7197</eissn><coden>SIJCD4</coden><abstract>Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0905013</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-5204 |
ispartof | SIAM journal on scientific and statistical computing, 1984-03, Vol.5 (1), p.175-191 |
issn | 0196-5204 1064-8275 2168-3417 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921010867 |
source | SIAM Journals Online |
subjects | Algorithms Approximation Exact sciences and technology Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation Polynomials Sciences and techniques of general use |
title | On nonlinear functions of linear combinations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20nonlinear%20functions%20of%20linear%20combinations&rft.jtitle=SIAM%20journal%20on%20scientific%20and%20statistical%20computing&rft.au=DIACONIS,%20P&rft.date=1984-03-01&rft.volume=5&rft.issue=1&rft.spage=175&rft.epage=191&rft.pages=175-191&rft.issn=0196-5204&rft.eissn=2168-3417&rft.coden=SIJCD4&rft_id=info:doi/10.1137/0905013&rft_dat=%3Cproquest_cross%3E2583635441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921010867&rft_id=info:pmid/&rfr_iscdi=true |