On nonlinear functions of linear combinations

Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific and statistical computing 1984-03, Vol.5 (1), p.175-191
Hauptverfasser: DIACONIS, P, MEHRDAD SHAHSHAHANI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 1
container_start_page 175
container_title SIAM journal on scientific and statistical computing
container_volume 5
creator DIACONIS, P
MEHRDAD SHAHSHAHANI
description Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.
doi_str_mv 10.1137/0905013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921010867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583635441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</originalsourceid><addsrcrecordid>eNo9kE1LxDAURYMoWKv4F4oIrqrvNW2aLGXwCwZmo-vwmibQoZOMyXThv7fjFFcXLodz4TJ2i_CIyNsnUNAA8jOWVShkyWtsz1kGqETZVFBfsquUtgAcG1VnrNz4wgc_Dt5SLNzkzWEIPhXBFUtnwq4bPP3V1-zC0ZjszZI5-3p9-Vy9l-vN28fqeV0ajnAoRe16iWhbMLKvFPUCjGqw7QxJEi1HicJRxzsrpVFkqMO-7vvGVmQNiJrn7O7k3cfwPdl00NswRT9PalUhIMjZkrOHE2RiSClap_dx2FH80Qj6eIVerpjJ-0VHydDoInkzpH9cVUcM-S_i6Vvq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921010867</pqid></control><display><type>article</type><title>On nonlinear functions of linear combinations</title><source>SIAM Journals Online</source><creator>DIACONIS, P ; MEHRDAD SHAHSHAHANI</creator><creatorcontrib>DIACONIS, P ; MEHRDAD SHAHSHAHANI</creatorcontrib><description>Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.</description><identifier>ISSN: 0196-5204</identifier><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 2168-3417</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0905013</identifier><identifier>CODEN: SIJCD4</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Polynomials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific and statistical computing, 1984-03, Vol.5 (1), p.175-191</ispartof><rights>1985 INIST-CNRS</rights><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</citedby><cites>FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9205011$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DIACONIS, P</creatorcontrib><creatorcontrib>MEHRDAD SHAHSHAHANI</creatorcontrib><title>On nonlinear functions of linear combinations</title><title>SIAM journal on scientific and statistical computing</title><description>Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0196-5204</issn><issn>1064-8275</issn><issn>2168-3417</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LxDAURYMoWKv4F4oIrqrvNW2aLGXwCwZmo-vwmibQoZOMyXThv7fjFFcXLodz4TJ2i_CIyNsnUNAA8jOWVShkyWtsz1kGqETZVFBfsquUtgAcG1VnrNz4wgc_Dt5SLNzkzWEIPhXBFUtnwq4bPP3V1-zC0ZjszZI5-3p9-Vy9l-vN28fqeV0ajnAoRe16iWhbMLKvFPUCjGqw7QxJEi1HicJRxzsrpVFkqMO-7vvGVmQNiJrn7O7k3cfwPdl00NswRT9PalUhIMjZkrOHE2RiSClap_dx2FH80Qj6eIVerpjJ-0VHydDoInkzpH9cVUcM-S_i6Vvq</recordid><startdate>19840301</startdate><enddate>19840301</enddate><creator>DIACONIS, P</creator><creator>MEHRDAD SHAHSHAHANI</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19840301</creationdate><title>On nonlinear functions of linear combinations</title><author>DIACONIS, P ; MEHRDAD SHAHSHAHANI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-64fd811e70c8d29ad60c9517bca8a6731816fab3be88c9acab1d4dd5e2aec0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DIACONIS, P</creatorcontrib><creatorcontrib>MEHRDAD SHAHSHAHANI</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific and statistical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DIACONIS, P</au><au>MEHRDAD SHAHSHAHANI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On nonlinear functions of linear combinations</atitle><jtitle>SIAM journal on scientific and statistical computing</jtitle><date>1984-03-01</date><risdate>1984</risdate><volume>5</volume><issue>1</issue><spage>175</spage><epage>191</epage><pages>175-191</pages><issn>0196-5204</issn><issn>1064-8275</issn><eissn>2168-3417</eissn><eissn>1095-7197</eissn><coden>SIJCD4</coden><abstract>Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0905013</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-5204
ispartof SIAM journal on scientific and statistical computing, 1984-03, Vol.5 (1), p.175-191
issn 0196-5204
1064-8275
2168-3417
1095-7197
language eng
recordid cdi_proquest_journals_921010867
source SIAM Journals Online
subjects Algorithms
Approximation
Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Polynomials
Sciences and techniques of general use
title On nonlinear functions of linear combinations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20nonlinear%20functions%20of%20linear%20combinations&rft.jtitle=SIAM%20journal%20on%20scientific%20and%20statistical%20computing&rft.au=DIACONIS,%20P&rft.date=1984-03-01&rft.volume=5&rft.issue=1&rft.spage=175&rft.epage=191&rft.pages=175-191&rft.issn=0196-5204&rft.eissn=2168-3417&rft.coden=SIJCD4&rft_id=info:doi/10.1137/0905013&rft_dat=%3Cproquest_cross%3E2583635441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921010867&rft_id=info:pmid/&rfr_iscdi=true