On nonlinear functions of linear combinations

Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific and statistical computing 1984-03, Vol.5 (1), p.175-191
Hauptverfasser: DIACONIS, P, MEHRDAD SHAHSHAHANI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Projection pursuit algorithms approximate a function of $p$ variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.
ISSN:0196-5204
1064-8275
2168-3417
1095-7197
DOI:10.1137/0905013