Design of FIR digital filters with prescribed flatness and peak error constraints using second-order cone programming

This paper studies the design of digital finite impulse response (FIR) filters with prescribed flatness and peak design error constraints using second-order cone programming (SOCP). SOCP is a powerful convex optimization method, where linear and convex quadratic inequality constraints can readily be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 2005-09, Vol.52 (9), p.601-605
Hauptverfasser: Tsui, K.M., Chan, S.C., Yeung, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the design of digital finite impulse response (FIR) filters with prescribed flatness and peak design error constraints using second-order cone programming (SOCP). SOCP is a powerful convex optimization method, where linear and convex quadratic inequality constraints can readily be incorporated. It is utilized in this study for the optimal minimax and least squares design of linear-phase and low-delay (LD) FIR filters with prescribed magnitude flatness and peak design error. The proposed approach offers more flexibility than traditional maximally-flat approach for the tradeoff between the approximation error and the degree of design freedom. Using these results, new LD specialized filters such as digital differentiators, Hilbert Transformers, Mth band filters and variable digital filters with prescribed magnitude flatness constraints can also be derived.
ISSN:1549-7747
1057-7130
1558-3791
DOI:10.1109/TCSII.2005.850515