SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization

Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2002, Vol.12 (4), p.979-1006
Hauptverfasser: Gill, Philip E., Murray, Walter, Saunders, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. We discuss an SQP algorithm that uses a smooth augmented Lagrangian merit function and makes explicit provision for infeasibility in the original problem and the QP subproblems. SNOPT is a particular implementation that makes use of a semidefinite QP solver. It is based on a limited-memory quasi-Newton approximation to the Hessian of the Lagrangian and uses a reduced-Hessian algorithm (SQOPT) for solving the QP subproblems. It is designed for problems with many thousands of constraints and variables but a moderate number of degrees of freedom (say, up to 2000). An important application is to trajectory optimization in the aerospace industry. Numerical results are given for most problems in the CUTE and COPS test collections (about 900 examples).
ISSN:1052-6234
1095-7189
DOI:10.1137/S1052623499350013