Excessive Gap Technique in Nonsmooth Convex Minimization

In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2005-01, Vol.16 (1), p.235
1. Verfasser: Nesterov, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of convergence of order O(1/k), where k is the iteration count. Another example is a gradient scheme, which minimizes a nonsmooth strongly convex function with known structure with rate of convergence O(1/k2). In both cases the efficiency of the methods is higher than the corresponding black-box lower complexity bounds by an order of magnitude.
ISSN:1052-6234
1095-7189
DOI:10.1137/S1052623403422285