Excessive Gap Technique in Nonsmooth Convex Minimization
In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2005-01, Vol.16 (1), p.235 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of convergence of order O(1/k), where k is the iteration count. Another example is a gradient scheme, which minimizes a nonsmooth strongly convex function with known structure with rate of convergence O(1/k2). In both cases the efficiency of the methods is higher than the corresponding black-box lower complexity bounds by an order of magnitude. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/S1052623403422285 |