On Lovász--Schrijver Lift-and-Project Procedures on the Dantzig--Fulkerson--Johnson Relaxation of the TSP
We study the Lovasz--Schrijver lift-and-project procedure $N_+$ on the linear relaxation of the Dantzig--Fulkerson--Johnson formulation of the traveling salesman problem (TSP). A long standing conjecture states that the integrality gap of this relaxation is $\frac43$ in the case of metric costs. In...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2005-01, Vol.16 (2), p.380-399 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the Lovasz--Schrijver lift-and-project procedure $N_+$ on the linear relaxation of the Dantzig--Fulkerson--Johnson formulation of the traveling salesman problem (TSP). A long standing conjecture states that the integrality gap of this relaxation is $\frac43$ in the case of metric costs. In this paper, we show that the $N_+$-rank of 2-matching inequalities relative to this relaxation can be arbitrarily high and obtain as a corollary that even after applying $N_+$ to the relaxation a fixed number of times, the integrality gap of the resulting relaxation is at least $\frac43$. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/040605849 |