On Lovász--Schrijver Lift-and-Project Procedures on the Dantzig--Fulkerson--Johnson Relaxation of the TSP

We study the Lovasz--Schrijver lift-and-project procedure $N_+$ on the linear relaxation of the Dantzig--Fulkerson--Johnson formulation of the traveling salesman problem (TSP). A long standing conjecture states that the integrality gap of this relaxation is $\frac43$ in the case of metric costs. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2005-01, Vol.16 (2), p.380-399
1. Verfasser: Cheung, Kevin K. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Lovasz--Schrijver lift-and-project procedure $N_+$ on the linear relaxation of the Dantzig--Fulkerson--Johnson formulation of the traveling salesman problem (TSP). A long standing conjecture states that the integrality gap of this relaxation is $\frac43$ in the case of metric costs. In this paper, we show that the $N_+$-rank of 2-matching inequalities relative to this relaxation can be arbitrarily high and obtain as a corollary that even after applying $N_+$ to the relaxation a fixed number of times, the integrality gap of the resulting relaxation is at least $\frac43$.
ISSN:1052-6234
1095-7189
DOI:10.1137/040605849