Critical Value Functions have Finite Modulus of Concavity

We consider a smooth finite dimensional parametric optimization problem ${\cal P}(y)$ with objective function $f(x,y)$. Here, $x$ and $y$ denote the state variable and the parameter, respectively. In the case that $\overline{x}$ is a strongly stable Karush--Kuhn--Tucker point for ${\cal P}(\overline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2006-01, Vol.16 (4), p.1044-1053
Hauptverfasser: Günzel, Harald, Vazquez, Francisco Guerra, Jongen, Hubertus Th
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a smooth finite dimensional parametric optimization problem ${\cal P}(y)$ with objective function $f(x,y)$. Here, $x$ and $y$ denote the state variable and the parameter, respectively. In the case that $\overline{x}$ is a strongly stable Karush--Kuhn--Tucker point for ${\cal P}(\overline{y})$, a neighborhood of $\overline{x}$ contains a unique Karush--Kuhn--Tucker point $x(y)$ for ${\cal P}(y)$, provided that $y$ is sufficiently close to $\overline{y}$. This gives rise to the critical value function $y\mapsto\varphi(y):=f(x(y),y)$. Under the additional assumption that the Mangasarian--Fromovitz constraint qualification is satisfied at $\overline{x}$, we show that $\varphi$ has finite modulus of concavity. That means $\varphi$ becomes convex in a neighborhood of $\overline{y}$ by adding to it the function $y\mapsto (\alpha/2)\cdot\|y-\overline{y}\|^2$ for some $\alpha>0$. Moreover, we present an explicit upper bound for the $\alpha$ to be used. The latter bound turns out to be sharp for problem data in general position.
ISSN:1052-6234
1095-7189
DOI:10.1137/S1052623403434735