Clarke Subgradients of Stratifiable Functions
We establish the following result: If the graph of a lower semicontinuous real-extended-valued function $f:\mathbb{R} ^{n}\rightarrow\mathbb{R}\cup\{+\infty\}$ admits a Whitney stratification (so in particular if $f$ is a semialgebraic function), then the norm of the gradient of $f$ at $x\in\mbox{do...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2007-01, Vol.18 (2), p.556-572 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish the following result: If the graph of a lower semicontinuous real-extended-valued function $f:\mathbb{R} ^{n}\rightarrow\mathbb{R}\cup\{+\infty\}$ admits a Whitney stratification (so in particular if $f$ is a semialgebraic function), then the norm of the gradient of $f$ at $x\in\mbox{dom\,}f$ relative to the stratum containing $x$ bounds from below all norms of Clarke subgradients of $f$ at $x$. As a consequence, we obtain a Morse-Sard type of theorem as well as a nonsmooth extension of the Kurdyka-Lojasiewicz inequality for functions definable in an arbitrary o-minimal structure. It is worthwhile pointing out that, even in a smooth setting, this last result generalizes the one given in [K. Kurdyka, Ann. Inst. Fourier (Grenoble), 48 (1998), pp. 769-783] by removing the boundedness assumption on the domain of the function. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/060670080 |