Toward a multiple clock/voltage island design style for power-aware processors

Enabled by the continuous advancement in fabrication technology, present-day synchronous microprocessors include more than 100 million transistors and have clock speeds well in excess of the 1-GHz mark. Distributing a low-skew clock signal in this frequency range to all areas of a large chip is a ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2005-05, Vol.13 (5), p.591-603
Hauptverfasser: Talpes, E., Marculescu, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enabled by the continuous advancement in fabrication technology, present-day synchronous microprocessors include more than 100 million transistors and have clock speeds well in excess of the 1-GHz mark. Distributing a low-skew clock signal in this frequency range to all areas of a large chip is a task of growing complexity. As a solution to this problem, designers have recently suggested the use of frequency islands that are locally clocked and externally communicate with each other using mixed clock communication schemes. Such a design style fits nicely with the recently proposed concept of voltage islands that, in addition, can potentially enable fine-grain dynamic power management by simultaneous voltage and frequency scaling. This paper proposes a design exploration framework for application-adaptive multiple-clock processors which provides the means for analyzing and identifying the right interdomain communication scheme and the proper granularity for the choice of voltage/frequency islands in case of superscalar, out-of-order processors. In addition, the presented design exploration framework allows for comparative analysis of newly proposed or already published application-driven dynamic power management strategies. Such a design exploration framework and accompanying results can help designers and computer architects in choosing the right design strategy for achieving better power-performance tradeoffs in multiple-clock high-end processors.
ISSN:1063-8210
1557-9999
DOI:10.1109/TVLSI.2005.844305