Sensitivity Calculations for Poisson's Equation via the Adjoint Field Method

Adjoint field methods are both elegant and efficient for calculating sensitivity information required across a wide range of physics-based inverse problems. In this letter, we provide a unified approach to the derivation of such methods for problems whose physics are provided by Poisson's equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2012-03, Vol.9 (2), p.237-241
Hauptverfasser: Aghasi, A., Miller, E. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adjoint field methods are both elegant and efficient for calculating sensitivity information required across a wide range of physics-based inverse problems. In this letter, we provide a unified approach to the derivation of such methods for problems whose physics are provided by Poisson's equation. Unlike existing approaches in the literature, we consider in detail and explicitly the role of general boundary conditions in the derivation of the associated adjoint-field-based sensitivities. We highlight the relationship between the adjoint field computations required for both gradient decent and Gauss-Newton approaches to image formation. Our derivation is based on standard results from vector calculus coupled with transparent manipulation of the underlying partial different equations, thereby making the concepts employed in this letter easily adaptable to other systems of interest.
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2011.2164052