Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives
In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 1993-11, Vol.3 (4), p.696-725 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 725 |
---|---|
container_issue | 4 |
container_start_page | 696 |
container_title | SIAM journal on optimization |
container_volume | 3 |
creator | Carpenter, Tamra J. Lusting, Irvin J. Mulvey, John M. Shanno, David F. |
description | In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are provided for the multiple correcting procedure using several strategies for determining the number of corrections in a given iteration. The results indicate that iteration counts can be significantly reduced by allowing higher-order corrections but at the the cost of extra work per iteration. The procedure is shown to be a level-$m$ composite Newton interior point method, where $m$ is the number of corrections performed in an iteration. |
doi_str_mv | 10.1137/0803036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920197373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580390921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-18019bc357d8714ac8bcf0380a4fa6c254d7e769b43ab083ebbc7006eda114563</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKf4F4IvPkVvmrZJH8fQbTDZBH2uSZq6jNnUm0zx39uxPZ3vwLnnwiHklsMD50I-ggIBojwjIw5VwSRX1fmBi4yVmcgvyVWMWwBQValG5GPuPzcO2Qobh3SNrvE2BWTTgOgORBddcugHWAffJfri0iY0kf76tKGTvt95q5MPHU2Bvu51g4OzdGW2w7X_cfGaXLR6F93NScfk_fnpbTpny9VsMZ0smeUqS4wr4JWxopCNkjzXVhnbglCg81aXNivyRjpZViYX2oASzhgrAUrXaM7zohRjcnfs7TF8711M9TbssRte1lU2dEshxRC6P4YshhjRtXWP_kvjX82hPqxXn9YT_1gsYY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920197373</pqid></control><display><type>article</type><title>Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives</title><source>SIAM Journals Online</source><creator>Carpenter, Tamra J. ; Lusting, Irvin J. ; Mulvey, John M. ; Shanno, David F.</creator><creatorcontrib>Carpenter, Tamra J. ; Lusting, Irvin J. ; Mulvey, John M. ; Shanno, David F.</creatorcontrib><description>In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are provided for the multiple correcting procedure using several strategies for determining the number of corrections in a given iteration. The results indicate that iteration counts can be significantly reduced by allowing higher-order corrections but at the the cost of extra work per iteration. The procedure is shown to be a level-$m$ composite Newton interior point method, where $m$ is the number of corrections performed in an iteration.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/0803036</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Linear programming ; Methods ; Operations research</subject><ispartof>SIAM journal on optimization, 1993-11, Vol.3 (4), p.696-725</ispartof><rights>[Copyright] © 1993 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-18019bc357d8714ac8bcf0380a4fa6c254d7e769b43ab083ebbc7006eda114563</citedby><cites>FETCH-LOGICAL-c182t-18019bc357d8714ac8bcf0380a4fa6c254d7e769b43ab083ebbc7006eda114563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Carpenter, Tamra J.</creatorcontrib><creatorcontrib>Lusting, Irvin J.</creatorcontrib><creatorcontrib>Mulvey, John M.</creatorcontrib><creatorcontrib>Shanno, David F.</creatorcontrib><title>Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives</title><title>SIAM journal on optimization</title><description>In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are provided for the multiple correcting procedure using several strategies for determining the number of corrections in a given iteration. The results indicate that iteration counts can be significantly reduced by allowing higher-order corrections but at the the cost of extra work per iteration. The procedure is shown to be a level-$m$ composite Newton interior point method, where $m$ is the number of corrections performed in an iteration.</description><subject>Algorithms</subject><subject>Linear programming</subject><subject>Methods</subject><subject>Operations research</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFFLwzAUhYMoOKf4F4IvPkVvmrZJH8fQbTDZBH2uSZq6jNnUm0zx39uxPZ3vwLnnwiHklsMD50I-ggIBojwjIw5VwSRX1fmBi4yVmcgvyVWMWwBQValG5GPuPzcO2Qobh3SNrvE2BWTTgOgORBddcugHWAffJfri0iY0kf76tKGTvt95q5MPHU2Bvu51g4OzdGW2w7X_cfGaXLR6F93NScfk_fnpbTpny9VsMZ0smeUqS4wr4JWxopCNkjzXVhnbglCg81aXNivyRjpZViYX2oASzhgrAUrXaM7zohRjcnfs7TF8711M9TbssRte1lU2dEshxRC6P4YshhjRtXWP_kvjX82hPqxXn9YT_1gsYY0</recordid><startdate>199311</startdate><enddate>199311</enddate><creator>Carpenter, Tamra J.</creator><creator>Lusting, Irvin J.</creator><creator>Mulvey, John M.</creator><creator>Shanno, David F.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>199311</creationdate><title>Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives</title><author>Carpenter, Tamra J. ; Lusting, Irvin J. ; Mulvey, John M. ; Shanno, David F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-18019bc357d8714ac8bcf0380a4fa6c254d7e769b43ab083ebbc7006eda114563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Linear programming</topic><topic>Methods</topic><topic>Operations research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, Tamra J.</creatorcontrib><creatorcontrib>Lusting, Irvin J.</creatorcontrib><creatorcontrib>Mulvey, John M.</creatorcontrib><creatorcontrib>Shanno, David F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, Tamra J.</au><au>Lusting, Irvin J.</au><au>Mulvey, John M.</au><au>Shanno, David F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives</atitle><jtitle>SIAM journal on optimization</jtitle><date>1993-11</date><risdate>1993</risdate><volume>3</volume><issue>4</issue><spage>696</spage><epage>725</epage><pages>696-725</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are provided for the multiple correcting procedure using several strategies for determining the number of corrections in a given iteration. The results indicate that iteration counts can be significantly reduced by allowing higher-order corrections but at the the cost of extra work per iteration. The procedure is shown to be a level-$m$ composite Newton interior point method, where $m$ is the number of corrections performed in an iteration.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0803036</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 1993-11, Vol.3 (4), p.696-725 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_proquest_journals_920197373 |
source | SIAM Journals Online |
subjects | Algorithms Linear programming Methods Operations research |
title | Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher-Order%20Predictor-Corrector%20Interior%20Point%20Methods%20with%20Application%20to%20Quadratic%20Objectives&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Carpenter,%20Tamra%20J.&rft.date=1993-11&rft.volume=3&rft.issue=4&rft.spage=696&rft.epage=725&rft.pages=696-725&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/0803036&rft_dat=%3Cproquest_cross%3E2580390921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920197373&rft_id=info:pmid/&rfr_iscdi=true |