Higher-Order Predictor-Corrector Interior Point Methods with Application to Quadratic Objectives

In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 1993-11, Vol.3 (4), p.696-725
Hauptverfasser: Carpenter, Tamra J., Lusting, Irvin J., Mulvey, John M., Shanno, David F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the authors explore the full utility of Mehrotra's predictor-corrector method in the context of linear and convex quadratic programs. They describe a procedure for doing multiple corrections at each iteration and implement it within the framework of OB1. Computational results are provided for the multiple correcting procedure using several strategies for determining the number of corrections in a given iteration. The results indicate that iteration counts can be significantly reduced by allowing higher-order corrections but at the the cost of extra work per iteration. The procedure is shown to be a level-$m$ composite Newton interior point method, where $m$ is the number of corrections performed in an iteration.
ISSN:1052-6234
1095-7189
DOI:10.1137/0803036