One-Parametric Semi-Infinite Optimization: On the Stability of the Feasible Set

This paper studies a global stability property of the (noncompact) feasible set $M( H,G,t )$ of a semi-infinite optimization problem defined by finitely many equations $H( x,t ) = 0$ and, perhaps, infinitely many inequalities $G( x,t,y ) \leq 0$ that depend on a real parameter $t$ that varies in a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 1994-08, Vol.4 (3), p.637-648
Hauptverfasser: Jongen, Hubertus Th, R{\"u}ckmann, Jan-J., Weber, Gerd-Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies a global stability property of the (noncompact) feasible set $M( H,G,t )$ of a semi-infinite optimization problem defined by finitely many equations $H( x,t ) = 0$ and, perhaps, infinitely many inequalities $G( x,t,y ) \leq 0$ that depend on a real parameter $t$ that varies in a compact parameter interval $T$. Global stability refers to the homeomorphy of $M[ H,G,t_1 ]$ and $M[ H,G,t_2 ]$ for any parameter values $t_1 ,t_2 \in T$. It is shown that the overall validity of a so-called extended Mangasarian-Fromovitz constraint qualification at infinity (a constraint qualification taking parameter information into account) is sufficient for the stability mentioned.
ISSN:1052-6234
1095-7189
DOI:10.1137/0804036