One-Parametric Semi-Infinite Optimization: On the Stability of the Feasible Set
This paper studies a global stability property of the (noncompact) feasible set $M( H,G,t )$ of a semi-infinite optimization problem defined by finitely many equations $H( x,t ) = 0$ and, perhaps, infinitely many inequalities $G( x,t,y ) \leq 0$ that depend on a real parameter $t$ that varies in a c...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 1994-08, Vol.4 (3), p.637-648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies a global stability property of the (noncompact) feasible set $M( H,G,t )$ of a semi-infinite optimization problem defined by finitely many equations $H( x,t ) = 0$ and, perhaps, infinitely many inequalities $G( x,t,y ) \leq 0$ that depend on a real parameter $t$ that varies in a compact parameter interval $T$. Global stability refers to the homeomorphy of $M[ H,G,t_1 ]$ and $M[ H,G,t_2 ]$ for any parameter values $t_1 ,t_2 \in T$. It is shown that the overall validity of a so-called extended Mangasarian-Fromovitz constraint qualification at infinity (a constraint qualification taking parameter information into account) is sufficient for the stability mentioned. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/0804036 |