An Interior-Point Method for Semidefinite Programming
We propose a new interior-point-based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems such as max-cut. Other applic...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 1996-05, Vol.6 (2), p.342-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new interior-point-based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems such as max-cut. Other applications include max-min eigenvalue problems and relaxations for the stable set problem. |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/0806020 |