On the Average-Case Complexity of Selecting the k th Best

Let $\bar V_k (n)$ be the minimum average number of pairwise comparisons needed to find the $k$th largest of $n$ numbers $(k \geqq 2)$, assuming that all $n!$ orderings are equally likely. D. W. Matula proved that, for some absolute constant $c$, $\bar V_k (n) - n \leqq ck\ln \ln n$ as $n \to \infty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1982-08, Vol.11 (3), p.428-447
Hauptverfasser: Yao, Andrew C., Yao, F. Frances
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\bar V_k (n)$ be the minimum average number of pairwise comparisons needed to find the $k$th largest of $n$ numbers $(k \geqq 2)$, assuming that all $n!$ orderings are equally likely. D. W. Matula proved that, for some absolute constant $c$, $\bar V_k (n) - n \leqq ck\ln \ln n$ as $n \to \infty $. In the present paper, we show that there exists an absolute constant $c' > 0$ such that $\bar V_k (n) - n \geqq c'k\ln \ln n$ as $n \to \infty $, proving a conjecture of Matula.
ISSN:0097-5397
1095-7111
DOI:10.1137/0211034