On the Average-Case Complexity of Selecting the k th Best
Let $\bar V_k (n)$ be the minimum average number of pairwise comparisons needed to find the $k$th largest of $n$ numbers $(k \geqq 2)$, assuming that all $n!$ orderings are equally likely. D. W. Matula proved that, for some absolute constant $c$, $\bar V_k (n) - n \leqq ck\ln \ln n$ as $n \to \infty...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1982-08, Vol.11 (3), p.428-447 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\bar V_k (n)$ be the minimum average number of pairwise comparisons needed to find the $k$th largest of $n$ numbers $(k \geqq 2)$, assuming that all $n!$ orderings are equally likely. D. W. Matula proved that, for some absolute constant $c$, $\bar V_k (n) - n \leqq ck\ln \ln n$ as $n \to \infty $. In the present paper, we show that there exists an absolute constant $c' > 0$ such that $\bar V_k (n) - n \geqq c'k\ln \ln n$ as $n \to \infty $, proving a conjecture of Matula. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/0211034 |