Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging

Silicon fusion and eutectic bonding processes based on the technique of localized heating have been successfully demonstrated. Phosphorus-doped polysilicon and gold films are applied separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments. These films are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2000-03, Vol.9 (1), p.3-8
Hauptverfasser: Cheng, Y.T., Lin, L., Najafi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon fusion and eutectic bonding processes based on the technique of localized heating have been successfully demonstrated. Phosphorus-doped polysilicon and gold films are applied separately in the silicon-to-glass fusion bonding and silicon-to-gold eutectic bonding experiments. These films are patterned as line-shape resistive heaters with widths of 5 or 7 /spl mu/m for the purpose of heating and bonding. In the experiments, silicon-to-glass fusion bonding and silicon to gold eutectic bonding are successfully achieved at temperatures above 1000/spl deg/C and 800/spl deg/C, respectively, by applying 1-MPa contact pressure. Both bonding processes can achieve bonding strength comparable to the fracture toughness of bulk silicon in less than 5 min. Without using global heating furnaces, localized bonding process is conducted in the common environment of room temperature and atmospheric pressure. Although these processes are accomplished within a confined bonding region and under high temperature, the substrate temperature remains low. This new class of bonding scheme has potential applications for microelectromechanical systems fabrication and packaging that require low-temperature processing at the wafer level, excellent bonding strength, and hermetic sealing characteristics.
ISSN:1057-7157
1941-0158
DOI:10.1109/84.825770