The organ pipe permutation
Let $(p_1 ,p_2 , \cdots ,p_n )$ be a probability distribution, $\pi = (\pi _1 ,\pi _2 , \cdots ,\pi _n )$ be a permutation of $1,2, \cdots ,n$ and $X_1 ,X_2 , \cdots ,X_k $ be $k$ independent and identically distributed random variables with distribution $P(X = i) = p\pi _i $. It is known that the o...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1984-08, Vol.13 (3), p.531-540 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $(p_1 ,p_2 , \cdots ,p_n )$ be a probability distribution, $\pi = (\pi _1 ,\pi _2 , \cdots ,\pi _n )$ be a permutation of $1,2, \cdots ,n$ and $X_1 ,X_2 , \cdots ,X_k $ be $k$ independent and identically distributed random variables with distribution $P(X = i) = p\pi _i $. It is known that the organ pipe permutation $\pi ^ * $ makes the range \[ D(k,\pi ) = \max\limits_{1 \leqq j \leqq k} X_i - \min\limits_{1 \leqq j \leqq k} X_i \]a stochastic minimum for $k = 2$ (P. P. Bergmans, Information and Control, 20 (1972), pp. 331-350), and minimal on the average for general $k$ (J. R. Bitner and C. K. Wong, 8 (1979), pp. 479-498). We prove the stochastic minimality for general $k$ and study a natural extension of the organ pipe permutation that is optimal when certain constraints are placed on the possible choices of $\pi $. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/0213033 |