The structure of polynomial ideals and Gröbner bases
This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdot...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1990-08, Vol.19 (4), p.750-773 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 773 |
---|---|
container_issue | 4 |
container_start_page | 750 |
container_title | SIAM journal on computing |
container_volume | 19 |
creator | DUBE, T. W |
description | This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$. |
doi_str_mv | 10.1137/0219053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919766160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578201351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdRsFbxFQZBXEXvnd_MUopWoeCmrsNkMoMpaRJnkkVfzBfwxUxpwNVZnI_vwCHkFuERkesnYGhA8jOyQDAy04h4ThYARmeSG31JrlLaAaAQyBdEbr88TUMc3TBGT7tA-645tN2-tg2tK2-bRG1b0XX8_SlbH2lpk0_X5CJMjb-Zc0k-X1-2q7ds87F-Xz1vMsdyGDImmAGrLABwl1cieKcFlszL0iswJRrJTM4NE6BKHwLkVlY8N5bnoEBbviR3J28fu-_Rp6HYdWNsp8nCoNFKoYIJejhBLnYpRR-KPtZ7Gw8FQnG8pJgvmcj7WWeTs02ItnV1-seNAMak4H8g3l3S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919766160</pqid></control><display><type>article</type><title>The structure of polynomial ideals and Gröbner bases</title><source>SIAM Journals Online</source><creator>DUBE, T. W</creator><creatorcontrib>DUBE, T. W</creatorcontrib><description>This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0219053</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithms ; Classical combinatorial problems ; Combinatorics ; Combinatorics. Ordered structures ; Decomposition ; Exact sciences and technology ; Mathematics ; Polynomials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on computing, 1990-08, Vol.19 (4), p.750-773</ispartof><rights>1991 INIST-CNRS</rights><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</citedby><cites>FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19402254$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUBE, T. W</creatorcontrib><title>The structure of polynomial ideals and Gröbner bases</title><title>SIAM journal on computing</title><description>This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Classical combinatorial problems</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1Kw0AUhQdRsFbxFQZBXEXvnd_MUopWoeCmrsNkMoMpaRJnkkVfzBfwxUxpwNVZnI_vwCHkFuERkesnYGhA8jOyQDAy04h4ThYARmeSG31JrlLaAaAQyBdEbr88TUMc3TBGT7tA-645tN2-tg2tK2-bRG1b0XX8_SlbH2lpk0_X5CJMjb-Zc0k-X1-2q7ds87F-Xz1vMsdyGDImmAGrLABwl1cieKcFlszL0iswJRrJTM4NE6BKHwLkVlY8N5bnoEBbviR3J28fu-_Rp6HYdWNsp8nCoNFKoYIJejhBLnYpRR-KPtZ7Gw8FQnG8pJgvmcj7WWeTs02ItnV1-seNAMak4H8g3l3S</recordid><startdate>19900801</startdate><enddate>19900801</enddate><creator>DUBE, T. W</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19900801</creationdate><title>The structure of polynomial ideals and Gröbner bases</title><author>DUBE, T. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Classical combinatorial problems</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUBE, T. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUBE, T. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of polynomial ideals and Gröbner bases</atitle><jtitle>SIAM journal on computing</jtitle><date>1990-08-01</date><risdate>1990</risdate><volume>19</volume><issue>4</issue><spage>750</spage><epage>773</epage><pages>750-773</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0219053</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1990-08, Vol.19 (4), p.750-773 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_journals_919766160 |
source | SIAM Journals Online |
subjects | Algebra Algorithms Classical combinatorial problems Combinatorics Combinatorics. Ordered structures Decomposition Exact sciences and technology Mathematics Polynomials Sciences and techniques of general use |
title | The structure of polynomial ideals and Gröbner bases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20polynomial%20ideals%20and%20Gr%C3%B6bner%20bases&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=DUBE,%20T.%20W&rft.date=1990-08-01&rft.volume=19&rft.issue=4&rft.spage=750&rft.epage=773&rft.pages=750-773&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0219053&rft_dat=%3Cproquest_cross%3E2578201351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919766160&rft_id=info:pmid/&rfr_iscdi=true |