The structure of polynomial ideals and Gröbner bases

This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1990-08, Vol.19 (4), p.750-773
1. Verfasser: DUBE, T. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 773
container_issue 4
container_start_page 750
container_title SIAM journal on computing
container_volume 19
creator DUBE, T. W
description This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.
doi_str_mv 10.1137/0219053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919766160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578201351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdRsFbxFQZBXEXvnd_MUopWoeCmrsNkMoMpaRJnkkVfzBfwxUxpwNVZnI_vwCHkFuERkesnYGhA8jOyQDAy04h4ThYARmeSG31JrlLaAaAQyBdEbr88TUMc3TBGT7tA-645tN2-tg2tK2-bRG1b0XX8_SlbH2lpk0_X5CJMjb-Zc0k-X1-2q7ds87F-Xz1vMsdyGDImmAGrLABwl1cieKcFlszL0iswJRrJTM4NE6BKHwLkVlY8N5bnoEBbviR3J28fu-_Rp6HYdWNsp8nCoNFKoYIJejhBLnYpRR-KPtZ7Gw8FQnG8pJgvmcj7WWeTs02ItnV1-seNAMak4H8g3l3S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919766160</pqid></control><display><type>article</type><title>The structure of polynomial ideals and Gröbner bases</title><source>SIAM Journals Online</source><creator>DUBE, T. W</creator><creatorcontrib>DUBE, T. W</creatorcontrib><description>This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0219053</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithms ; Classical combinatorial problems ; Combinatorics ; Combinatorics. Ordered structures ; Decomposition ; Exact sciences and technology ; Mathematics ; Polynomials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on computing, 1990-08, Vol.19 (4), p.750-773</ispartof><rights>1991 INIST-CNRS</rights><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</citedby><cites>FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19402254$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DUBE, T. W</creatorcontrib><title>The structure of polynomial ideals and Gröbner bases</title><title>SIAM journal on computing</title><description>This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Classical combinatorial problems</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkM1Kw0AUhQdRsFbxFQZBXEXvnd_MUopWoeCmrsNkMoMpaRJnkkVfzBfwxUxpwNVZnI_vwCHkFuERkesnYGhA8jOyQDAy04h4ThYARmeSG31JrlLaAaAQyBdEbr88TUMc3TBGT7tA-645tN2-tg2tK2-bRG1b0XX8_SlbH2lpk0_X5CJMjb-Zc0k-X1-2q7ds87F-Xz1vMsdyGDImmAGrLABwl1cieKcFlszL0iswJRrJTM4NE6BKHwLkVlY8N5bnoEBbviR3J28fu-_Rp6HYdWNsp8nCoNFKoYIJejhBLnYpRR-KPtZ7Gw8FQnG8pJgvmcj7WWeTs02ItnV1-seNAMak4H8g3l3S</recordid><startdate>19900801</startdate><enddate>19900801</enddate><creator>DUBE, T. W</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19900801</creationdate><title>The structure of polynomial ideals and Gröbner bases</title><author>DUBE, T. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-24290a6a0003c8d4fec741b2e5be609b195298392406beff08a5d389a380607a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Classical combinatorial problems</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DUBE, T. W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DUBE, T. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structure of polynomial ideals and Gröbner bases</atitle><jtitle>SIAM journal on computing</jtitle><date>1990-08-01</date><risdate>1990</risdate><volume>19</volume><issue>4</issue><spage>750</spage><epage>773</epage><pages>750-773</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0219053</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1990-08, Vol.19 (4), p.750-773
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919766160
source SIAM Journals Online
subjects Algebra
Algorithms
Classical combinatorial problems
Combinatorics
Combinatorics. Ordered structures
Decomposition
Exact sciences and technology
Mathematics
Polynomials
Sciences and techniques of general use
title The structure of polynomial ideals and Gröbner bases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structure%20of%20polynomial%20ideals%20and%20Gr%C3%B6bner%20bases&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=DUBE,%20T.%20W&rft.date=1990-08-01&rft.volume=19&rft.issue=4&rft.spage=750&rft.epage=773&rft.pages=750-773&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0219053&rft_dat=%3Cproquest_cross%3E2578201351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919766160&rft_id=info:pmid/&rfr_iscdi=true