The structure of polynomial ideals and Gröbner bases
This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdot...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1990-08, Vol.19 (4), p.750-773 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/0219053 |