The structure of polynomial ideals and Gröbner bases

This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1990-08, Vol.19 (4), p.750-773
1. Verfasser: DUBE, T. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces the cone decomposition of a polynomial ideal. It is shown that every ideal has a cone decomposition of a standard f orm. Using only this and combinatorial methods, the following sharpened bound for the degree of polynomials in a Grobner basis can be produced. Let $K[x_{1},\cdots , x_{n}]$ be a ring of multivariate polynomials with coefficients in a field $K$, and let $F$ be a subset of this ring such that $d$ is the maximum total degree of any polynomial in $F$. Then for any admissible ordering, the total degree of polynomials in a Grobner basis for the ideal generated by $F$ is bounded by $2(({{d^2} / 2}) + d)^{2^{n-1}}$.
ISSN:0097-5397
1095-7111
DOI:10.1137/0219053