Using interior-point methods for fast parallel algorithms for bipartite matching and related problems

In this paper interior-point methods for linear programming, developed in the context of sequential computation, are used to obtain a parallel algorithm for the bipartite matching problem. This algorithm finds a maximum cardinality matching in a bipartite graph with $n$ nodes and $m$ edges in $O(\sq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1992-02, Vol.21 (1), p.140-150
Hauptverfasser: GOLDBERG, A. V, PLOTKIN, S. A, SHMOYS, D. B, TARDOS, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper interior-point methods for linear programming, developed in the context of sequential computation, are used to obtain a parallel algorithm for the bipartite matching problem. This algorithm finds a maximum cardinality matching in a bipartite graph with $n$ nodes and $m$ edges in $O(\sqrt m \log ^3 n)$ time on a CRCW PRAM. The results here extend to the weighted bipartite matching problem and to the zero-one minimum-cost flow problem, yielding $O(\sqrt m \log ^2 n\log nC)$ algorithms, where $C > 1$ is an upper bound on the absolute value of the integral weights or costs in the two problems, respectively. The results here improve previous bounds on these problems and introduce interior-point methods to the context of parallel algorithm design.
ISSN:0097-5397
1095-7111
DOI:10.1137/0221011