Using interior-point methods for fast parallel algorithms for bipartite matching and related problems
In this paper interior-point methods for linear programming, developed in the context of sequential computation, are used to obtain a parallel algorithm for the bipartite matching problem. This algorithm finds a maximum cardinality matching in a bipartite graph with $n$ nodes and $m$ edges in $O(\sq...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1992-02, Vol.21 (1), p.140-150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper interior-point methods for linear programming, developed in the context of sequential computation, are used to obtain a parallel algorithm for the bipartite matching problem. This algorithm finds a maximum cardinality matching in a bipartite graph with $n$ nodes and $m$ edges in $O(\sqrt m \log ^3 n)$ time on a CRCW PRAM. The results here extend to the weighted bipartite matching problem and to the zero-one minimum-cost flow problem, yielding $O(\sqrt m \log ^2 n\log nC)$ algorithms, where $C > 1$ is an upper bound on the absolute value of the integral weights or costs in the two problems, respectively. The results here improve previous bounds on these problems and introduce interior-point methods to the context of parallel algorithm design. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/0221011 |