On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems

An exponential lower bound for the size of tree-like cutting planes refutations of a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the tree-like versions and the dag-like versions of reso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 2000-01, Vol.30 (5), p.1462-1484
Hauptverfasser: Bonet, Maria Luisa, Esteban, Juan Luis, Galesi, Nicola, Johannsen, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An exponential lower bound for the size of tree-like cutting planes refutations of a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the tree-like versions and the dag-like versions of resolution and cutting planes. In both cases only superpolynomial separations were known [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425--467; J. Johannsen, Inform. Process. Lett., 67 (1998), pp. 37--41; P. Clote and A. Setzer, in Proof Complexity and Feasible Arithmetics, Amer. Math. Soc., Providence, RI, 1998, pp. 93--117]. In order to prove these separations, the lower bounds on the depth of monotone circuits of Raz and McKenzie in [ Combinatorica, 19 (1999), pp. 403--435] are extended to monotone real circuits. An exponential separation is also proved between tree-like resolution and several refinements of resolution: negative resolution and regular resolution. Actually, this last separation also provides a separation between tree-like resolution and ordered resolution, and thus the corresponding superpolynomial separation of [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425--467] is extended. Finally, an exponential separation between ordered resolution and unrestricted resolution (also negative resolution) is proved. Only a superpolynomial separation between ordered and unrestricted resolution was previously known [A. Goerdt, Ann. Math. Artificial Intelligence, 6 (1992), pp. 169--184].
ISSN:0097-5397
1095-7111
DOI:10.1137/S0097539799352474