On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems
An exponential lower bound for the size of tree-like cutting planes refutations of a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the tree-like versions and the dag-like versions of reso...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2000-01, Vol.30 (5), p.1462-1484 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An exponential lower bound for the size of tree-like cutting planes refutations of a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the tree-like versions and the dag-like versions of resolution and cutting planes. In both cases only superpolynomial separations were known [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425--467; J. Johannsen, Inform. Process. Lett., 67 (1998), pp. 37--41; P. Clote and A. Setzer, in Proof Complexity and Feasible Arithmetics, Amer. Math. Soc., Providence, RI, 1998, pp. 93--117]. In order to prove these separations, the lower bounds on the depth of monotone circuits of Raz and McKenzie in [ Combinatorica, 19 (1999), pp. 403--435] are extended to monotone real circuits. An exponential separation is also proved between tree-like resolution and several refinements of resolution: negative resolution and regular resolution. Actually, this last separation also provides a separation between tree-like resolution and ordered resolution, and thus the corresponding superpolynomial separation of [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425--467] is extended. Finally, an exponential separation between ordered resolution and unrestricted resolution (also negative resolution) is proved. Only a superpolynomial separation between ordered and unrestricted resolution was previously known [A. Goerdt, Ann. Math. Artificial Intelligence, 6 (1992), pp. 169--184]. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/S0097539799352474 |