Approximating Longest Cycles in Graphs with Bounded Degrees
Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2006-01, Vol.36 (3), p.635-656 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 656 |
---|---|
container_issue | 3 |
container_start_page | 635 |
container_title | SIAM journal on computing |
container_volume | 36 |
creator | Chen, Guantao Gao, Zhicheng Yu, Xingxing Zang, Wenan |
description | Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle. |
doi_str_mv | 10.1137/050633263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_918696460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573997901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cc0f377ee54961027f8946af5c932caf2355e7268b680a0d555e422d2ff796463</originalsourceid><addsrcrecordid>eNo9kEFLxDAUhIMoWFcP_oPgzUP1vaRJGjytVVeh4EXPJaZJt8va1qRF99_bZcXTY-BjZt4Qcolwg8jVLQiQnDPJj0iCoEWqEPGYJABapYJrdUrOYtwAYJYhT8jdchhC_9N-mrHtGlr2XePiSIud3bpI246ughnWkX6345re91NXu5o-uCY4F8_JiTfb6C7-7oK8Pz2-Fc9p-bp6KZZlapnGMbUWPFfKOZFpicCUz3UmjRdWc2aNZ1wIp5jMP2QOBmoxy4yxmnmvtMwkX5Crg-_c9Gua61WbfgrdHFlpzOWegRm6PkA29DEG56shzF-FXYVQ7aep_qfhv2LOU4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918696460</pqid></control><display><type>article</type><title>Approximating Longest Cycles in Graphs with Bounded Degrees</title><source>SIAM Journals</source><source>EBSCOhost Business Source Complete</source><creator>Chen, Guantao ; Gao, Zhicheng ; Yu, Xingxing ; Zang, Wenan</creator><creatorcontrib>Chen, Guantao ; Gao, Zhicheng ; Yu, Xingxing ; Zang, Wenan</creatorcontrib><description>Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/050633263</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Approximation ; Combinatorics ; Decomposition ; Graphs</subject><ispartof>SIAM journal on computing, 2006-01, Vol.36 (3), p.635-656</ispartof><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cc0f377ee54961027f8946af5c932caf2355e7268b680a0d555e422d2ff796463</citedby><cites>FETCH-LOGICAL-c291t-cc0f377ee54961027f8946af5c932caf2355e7268b680a0d555e422d2ff796463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Guantao</creatorcontrib><creatorcontrib>Gao, Zhicheng</creatorcontrib><creatorcontrib>Yu, Xingxing</creatorcontrib><creatorcontrib>Zang, Wenan</creatorcontrib><title>Approximating Longest Cycles in Graphs with Bounded Degrees</title><title>SIAM journal on computing</title><description>Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Combinatorics</subject><subject>Decomposition</subject><subject>Graphs</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFLxDAUhIMoWFcP_oPgzUP1vaRJGjytVVeh4EXPJaZJt8va1qRF99_bZcXTY-BjZt4Qcolwg8jVLQiQnDPJj0iCoEWqEPGYJABapYJrdUrOYtwAYJYhT8jdchhC_9N-mrHtGlr2XePiSIud3bpI246ughnWkX6345re91NXu5o-uCY4F8_JiTfb6C7-7oK8Pz2-Fc9p-bp6KZZlapnGMbUWPFfKOZFpicCUz3UmjRdWc2aNZ1wIp5jMP2QOBmoxy4yxmnmvtMwkX5Crg-_c9Gua61WbfgrdHFlpzOWegRm6PkA29DEG56shzF-FXYVQ7aep_qfhv2LOU4c</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Chen, Guantao</creator><creator>Gao, Zhicheng</creator><creator>Yu, Xingxing</creator><creator>Zang, Wenan</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>200601</creationdate><title>Approximating Longest Cycles in Graphs with Bounded Degrees</title><author>Chen, Guantao ; Gao, Zhicheng ; Yu, Xingxing ; Zang, Wenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cc0f377ee54961027f8946af5c932caf2355e7268b680a0d555e422d2ff796463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Combinatorics</topic><topic>Decomposition</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guantao</creatorcontrib><creatorcontrib>Gao, Zhicheng</creatorcontrib><creatorcontrib>Yu, Xingxing</creatorcontrib><creatorcontrib>Zang, Wenan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guantao</au><au>Gao, Zhicheng</au><au>Yu, Xingxing</au><au>Zang, Wenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating Longest Cycles in Graphs with Bounded Degrees</atitle><jtitle>SIAM journal on computing</jtitle><date>2006-01</date><risdate>2006</risdate><volume>36</volume><issue>3</issue><spage>635</spage><epage>656</epage><pages>635-656</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050633263</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 2006-01, Vol.36 (3), p.635-656 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_journals_918696460 |
source | SIAM Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Applied mathematics Approximation Combinatorics Decomposition Graphs |
title | Approximating Longest Cycles in Graphs with Bounded Degrees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20Longest%20Cycles%20in%20Graphs%20with%20Bounded%20Degrees&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Chen,%20Guantao&rft.date=2006-01&rft.volume=36&rft.issue=3&rft.spage=635&rft.epage=656&rft.pages=635-656&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/050633263&rft_dat=%3Cproquest_cross%3E2573997901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918696460&rft_id=info:pmid/&rfr_iscdi=true |