Approximating Longest Cycles in Graphs with Bounded Degrees

Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 2006-01, Vol.36 (3), p.635-656
Hauptverfasser: Chen, Guantao, Gao, Zhicheng, Yu, Xingxing, Zang, Wenan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle.
ISSN:0097-5397
1095-7111
DOI:10.1137/050633263