Approximating Longest Cycles in Graphs with Bounded Degrees
Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2006-01, Vol.36 (3), p.635-656 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/050633263 |