Lossless Image Compression Using Super-Spatial Structure Prediction
We recognize that the key challenge in image compression is to efficiently represent and encode high-frequency image structure components, such as edges, patterns, and textures. In this work, we develop an efficient lossless image compression scheme called super-spatial structure prediction . This s...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2010-04, Vol.17 (4), p.383-386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We recognize that the key challenge in image compression is to efficiently represent and encode high-frequency image structure components, such as edges, patterns, and textures. In this work, we develop an efficient lossless image compression scheme called super-spatial structure prediction . This super-spatial prediction is motivated by motion prediction in video coding, attempting to find an optimal prediction of structure components within previously encoded image regions. We find that this super-spatial prediction is very efficient for image regions with significant structure components. Our extensive experimental results demonstrate that the proposed scheme is very competitive and even outperforms the state-of-the-art lossless image compression methods. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2010.2040925 |