On the Nonexistence of Perfect Codes Over Finite Fields

It is proved that there are no unknown perfect (Hamming-)error-correcting codes over finite fields.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1973-01, Vol.24 (1), p.88-96
1. Verfasser: Tietavainen, Aimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 96
container_issue 1
container_start_page 88
container_title SIAM journal on applied mathematics
container_volume 24
creator Tietavainen, Aimo
description It is proved that there are no unknown perfect (Hamming-)error-correcting codes over finite fields.
doi_str_mv 10.1137/0124010
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_917786989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2099907</jstor_id><sourcerecordid>2099907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-7611a3019557bdb9c240721b10fc0086cd7f8bdaddfd610c77d53ada703454773</originalsourceid><addsrcrecordid>eNo90EFLw0AQBeBFFKxV_AMeFi-eojPZJJM9SrEqFOtBwVtIdmcxpWbr7lb03xtp8fQuH_OGJ8Q5wjWiohvAvACEAzFB0GVGmL8digmAqjJUWh-LkxhXAIhVoSeCloNM7yyf_MDffUw8GJbeyWcOjk2SM285yuUXBznvhz7xGLy28VQcuXYd-WyfU_E6v3uZPWSL5f3j7HaRmRxUyqhCbBWgLkvqbKfN-Bvl2CE4A1BXxpKrO9ta62yFYIhsqVrbEqiiLIjUVFzu7m6C_9xyTM3Kb8MwVjYaiepK13pEVztkgo8xsGs2of9ow0-D0PyN0uxHGeXFTq5i8uGf5aC1BlK_p9paVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917786989</pqid></control><display><type>article</type><title>On the Nonexistence of Perfect Codes Over Finite Fields</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Tietavainen, Aimo</creator><creatorcontrib>Tietavainen, Aimo</creatorcontrib><description>It is proved that there are no unknown perfect (Hamming-)error-correcting codes over finite fields.</description><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0124010</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Binary codes ; Cardinality ; Codes ; Coding theory ; Error correction &amp; detection ; Inequality ; Integers ; Mathematical theorems ; Nonexistence ; Perfect codes</subject><ispartof>SIAM journal on applied mathematics, 1973-01, Vol.24 (1), p.88-96</ispartof><rights>Copyright 1973 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1973 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-7611a3019557bdb9c240721b10fc0086cd7f8bdaddfd610c77d53ada703454773</citedby><cites>FETCH-LOGICAL-c203t-7611a3019557bdb9c240721b10fc0086cd7f8bdaddfd610c77d53ada703454773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2099907$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2099907$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Tietavainen, Aimo</creatorcontrib><title>On the Nonexistence of Perfect Codes Over Finite Fields</title><title>SIAM journal on applied mathematics</title><description>It is proved that there are no unknown perfect (Hamming-)error-correcting codes over finite fields.</description><subject>Binary codes</subject><subject>Cardinality</subject><subject>Codes</subject><subject>Coding theory</subject><subject>Error correction &amp; detection</subject><subject>Inequality</subject><subject>Integers</subject><subject>Mathematical theorems</subject><subject>Nonexistence</subject><subject>Perfect codes</subject><issn>0036-1399</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90EFLw0AQBeBFFKxV_AMeFi-eojPZJJM9SrEqFOtBwVtIdmcxpWbr7lb03xtp8fQuH_OGJ8Q5wjWiohvAvACEAzFB0GVGmL8digmAqjJUWh-LkxhXAIhVoSeCloNM7yyf_MDffUw8GJbeyWcOjk2SM285yuUXBznvhz7xGLy28VQcuXYd-WyfU_E6v3uZPWSL5f3j7HaRmRxUyqhCbBWgLkvqbKfN-Bvl2CE4A1BXxpKrO9ta62yFYIhsqVrbEqiiLIjUVFzu7m6C_9xyTM3Kb8MwVjYaiepK13pEVztkgo8xsGs2of9ow0-D0PyN0uxHGeXFTq5i8uGf5aC1BlK_p9paVQ</recordid><startdate>19730101</startdate><enddate>19730101</enddate><creator>Tietavainen, Aimo</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19730101</creationdate><title>On the Nonexistence of Perfect Codes Over Finite Fields</title><author>Tietavainen, Aimo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-7611a3019557bdb9c240721b10fc0086cd7f8bdaddfd610c77d53ada703454773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Binary codes</topic><topic>Cardinality</topic><topic>Codes</topic><topic>Coding theory</topic><topic>Error correction &amp; detection</topic><topic>Inequality</topic><topic>Integers</topic><topic>Mathematical theorems</topic><topic>Nonexistence</topic><topic>Perfect codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tietavainen, Aimo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tietavainen, Aimo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Nonexistence of Perfect Codes Over Finite Fields</atitle><jtitle>SIAM journal on applied mathematics</jtitle><date>1973-01-01</date><risdate>1973</risdate><volume>24</volume><issue>1</issue><spage>88</spage><epage>96</epage><pages>88-96</pages><issn>0036-1399</issn><eissn>1095-712X</eissn><abstract>It is proved that there are no unknown perfect (Hamming-)error-correcting codes over finite fields.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0124010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1399
ispartof SIAM journal on applied mathematics, 1973-01, Vol.24 (1), p.88-96
issn 0036-1399
1095-712X
language eng
recordid cdi_proquest_journals_917786989
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive
subjects Binary codes
Cardinality
Codes
Coding theory
Error correction & detection
Inequality
Integers
Mathematical theorems
Nonexistence
Perfect codes
title On the Nonexistence of Perfect Codes Over Finite Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Nonexistence%20of%20Perfect%20Codes%20Over%20Finite%20Fields&rft.jtitle=SIAM%20journal%20on%20applied%20mathematics&rft.au=Tietavainen,%20Aimo&rft.date=1973-01-01&rft.volume=24&rft.issue=1&rft.spage=88&rft.epage=96&rft.pages=88-96&rft.issn=0036-1399&rft.eissn=1095-712X&rft_id=info:doi/10.1137/0124010&rft_dat=%3Cjstor_proqu%3E2099907%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917786989&rft_id=info:pmid/&rft_jstor_id=2099907&rfr_iscdi=true