Multivariable Expansions Using Time Scales Generated from Differential Equations

We deal with the equation (1 + ε t)y" + 2ε y' + y = 0 and show how a set of nonlinear time scales may be derived from the equation itself. Using these time scales multitime expansions of the solution of the equation satisfying the initial conditions y(0) = 0, y'(0) = 1 are found. Proo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1977-12, Vol.33 (4), p.581-586
Hauptverfasser: Levine, Lawrence E., Obi, Wilson C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We deal with the equation (1 + ε t)y" + 2ε y' + y = 0 and show how a set of nonlinear time scales may be derived from the equation itself. Using these time scales multitime expansions of the solution of the equation satisfying the initial conditions y(0) = 0, y'(0) = 1 are found. Proof of the uniform asymptotic convergence of the expansions is given. The technique used is an extension of the method used by Reiss [1] and has been successfully applied to a broad class of second order linear differential equations with slowly varying coefficients.
ISSN:0036-1399
1095-712X
DOI:10.1137/0133040