Changing Time History in Moving Boundary Problems

A class of diffusion-stress equations modeling transport of solvent in glassy polymers is considered. The problem is formulated as a one-phase Stefan problem. It is shown that the moving front changes like$\sqrt t$initially but quickly behaves like t as t increases. The t behavior is typical of stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 1990-04, Vol.50 (2), p.483-489
Hauptverfasser: Cohen, Donald S., Erneux, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of diffusion-stress equations modeling transport of solvent in glassy polymers is considered. The problem is formulated as a one-phase Stefan problem. It is shown that the moving front changes like$\sqrt t$initially but quickly behaves like t as t increases. The t behavior is typical of stress-dominated transport. The quasi-steady state approximation is used to analyze the time history of the moving front. This analysis is motivated by the small time solution.
ISSN:0036-1399
1095-712X
DOI:10.1137/0150028