A Factorization of the Spectral Galerkin System for Parameterized Matrix Equations: Derivation and Applications
Recent work has explored solver strategies for the linear system of equations arising from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic) inputs. We consider the related problem of a matrix equation whose matrix and right-hand side depend on a set of par...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2011-01, Vol.33 (5), p.2995-3009 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent work has explored solver strategies for the linear system of equations arising from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic) inputs. We consider the related problem of a matrix equation whose matrix and right-hand side depend on a set of parameters (e.g., a PDE with stochastic inputs semidiscretized in space) and examine the linear system arising from a similar Galerkin approximation of the solution. We derive a useful factorization of this system of equations, which yields bounds on the eigenvalues, clues to preconditioning, and a flexible implementation method for a wide array of problems. We complement this analysis with (i) a numerical study of preconditioners on a standard elliptic PDE test problem and (ii) a fluids application using existing CFD codes; the MATLAB codes used in the numerical studies are available online. |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/100799046 |