SPECTRAL SPARSIFICATION OF GRAPHS
We introduce a new notion of graph sparsification based on spectral similarity of graph Laplacians: spectral sparsification requires that the Laplacian quadratic form of the sparsifier approximate that of the original. This is equivalent to saying that the Laplacian of the sparsifier is a good preco...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2011-01, Vol.40 (4), p.981-1025 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new notion of graph sparsification based on spectral similarity of graph Laplacians: spectral sparsification requires that the Laplacian quadratic form of the sparsifier approximate that of the original. This is equivalent to saying that the Laplacian of the sparsifier is a good preconditioner for the Laplacian of the original. We prove that every graph has a spectral sparsifier of nearly linear size. Moreover, we present an algorithm that produces spectral sparsifiers in time $O(m\log^{c}m)$, where $m$ is the number of edges in the original graph and $c$ is some absolute constant. This construction is a key component of a nearly linear time algorithm for solving linear equations in diagonally dominant matrices. Our sparsification algorithm makes use of a nearly linear time algorithm for graph partitioning that satisfies a strong guarantee: if the partition it outputs is very unbalanced, then the larger part is contained in a subgraph of high conductance. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/08074489X |