Dysfunctional [gamma][delta] T Cells Contribute to Impaired Keratinocyte Homeostasis in Mouse Models of Obesity

Skin complications and chronic non-healing wounds are common in obesity, metabolic disease, and type 2 diabetes. Epidermal γδ T cells normally produce keratinocyte growth factors, participate in wound repair, and are necessary for keratinocyte homeostasis. We have determined that in γδ T cell-defici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of investigative dermatology 2011-12, Vol.131 (12), p.2409
Hauptverfasser: Taylor, Kristen R, Costanzo, Anne E, Jameson, Julie M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Skin complications and chronic non-healing wounds are common in obesity, metabolic disease, and type 2 diabetes. Epidermal γδ T cells normally produce keratinocyte growth factors, participate in wound repair, and are necessary for keratinocyte homeostasis. We have determined that in γδ T cell-deficient mice, there are reduced numbers of keratinocytes and the epidermis exhibits a flattened, thinner structure with fewer basal keratinocytes. This is important in obesity, where skin-resident γδ T cells are reduced and rendered dysfunctional. Similar to γδ T cell-deficient mice, keratinocytes are reduced and the epidermal structure is altered in two obese mouse models. Even in regions where γδ T cells are present, there are fewer keratinocytes in obese mice, indicating that dysfunctional γδ T cells are unable to regulate keratinocyte homeostasis. The impact of absent or impaired γδ T cells on epidermal structure is exacerbated in obesity as E-cadherin localization and expression are additionally altered. These studies reveal that γδ T cells are unable to regulate keratinocyte homeostasis in obesity and that the obese environment further impairs skin structure by altering cell-cell adhesion. Together, impaired keratinocyte homeostasis and epidermal barrier function through direct and indirect mechanisms result in susceptibility to skin complications, chronic wounds, and infection.
ISSN:0022-202X
1523-1747
DOI:10.1038/jid.2011.241