Stochastic Dynamics of Long Supply Chains with Random Breakdowns
We analyze the stochastic large time behavior of long supply chains via a traffic flow random particle model. As items travel on a virtual road from one production stage to the next, random breakdowns of the processors at each stage are modeled via a Markov process. The result is a conservation law...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied mathematics 2007-01, Vol.68 (1), p.59-79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the stochastic large time behavior of long supply chains via a traffic flow random particle model. As items travel on a virtual road from one production stage to the next, random breakdowns of the processors at each stage are modeled via a Markov process. The result is a conservation law for the expectation of the part density which holds on time scales which are large compared to the mean up and down times of the processors. |
---|---|
ISSN: | 0036-1399 1095-712X |
DOI: | 10.1137/060674302 |