Stochastic Dynamics of Long Supply Chains with Random Breakdowns

We analyze the stochastic large time behavior of long supply chains via a traffic flow random particle model. As items travel on a virtual road from one production stage to the next, random breakdowns of the processors at each stage are modeled via a Markov process. The result is a conservation law...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied mathematics 2007-01, Vol.68 (1), p.59-79
Hauptverfasser: Degond, P., Ringhofer, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze the stochastic large time behavior of long supply chains via a traffic flow random particle model. As items travel on a virtual road from one production stage to the next, random breakdowns of the processors at each stage are modeled via a Markov process. The result is a conservation law for the expectation of the part density which holds on time scales which are large compared to the mean up and down times of the processors.
ISSN:0036-1399
1095-712X
DOI:10.1137/060674302