On multivariate skewness and kurtosis
Let $X$ be a $d$-dimensional standardized random variable $({\bf E}(X) = 0, \operatorname{cov} (X) = 1)$. Then for a multivariate analogue of skewness $s = {\bf E}(\| X \|^2 X)$ and kurtosis $k = {\bf E}XX^T XX^T - (d + 2)I$ we show that $\| s \|^2 \leqq {\text{tr}}\, k + 2d$. For infinitely divisib...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1994-09, Vol.38 (3), p.547-551 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X$ be a $d$-dimensional standardized random variable $({\bf E}(X) = 0, \operatorname{cov} (X) = 1)$. Then for a multivariate analogue of skewness $s = {\bf E}(\| X \|^2 X)$ and kurtosis $k = {\bf E}XX^T XX^T - (d + 2)I$ we show that $\| s \|^2 \leqq {\text{tr}}\, k + 2d$. For infinitely divisible distributions $\| s \|^2 \leqq {\text{tr }}k$. |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/1138055 |