A stochastic measure and nonlinear approximation of some random fields

For a random field $\{ H_p (x,y), x,y \geqq 0\} $ where $H_p (x,y) = H_p (\eta (x,y)), H_p (z)$ is the Hermite polynomial of degree $p$ and $\{ \eta (x,y), x,y \geqq 0\} $ is a real Gaussian random field with $\eta (0,y) = \eta (x,0) = {\bf E} \eta (x,y) = 0$ a stochastic measure and nonlinear appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 1994-09, Vol.38 (3), p.525-528
1. Verfasser: IVKOVIC, Z. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a random field $\{ H_p (x,y), x,y \geqq 0\} $ where $H_p (x,y) = H_p (\eta (x,y)), H_p (z)$ is the Hermite polynomial of degree $p$ and $\{ \eta (x,y), x,y \geqq 0\} $ is a real Gaussian random field with $\eta (0,y) = \eta (x,0) = {\bf E} \eta (x,y) = 0$ a stochastic measure and nonlinear approximations are introduced and properties of mean-square error of approximations are studied.
ISSN:0040-585X
1095-7219
DOI:10.1137/1138050