Asymptotic Expansions for Median Estimate of a Parameter
We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain as...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 1997-01, Vol.41 (4), p.632-645 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 4 |
container_start_page | 632 |
container_title | Theory of probability and its applications |
container_volume | 41 |
creator | Burnashev, M. V. |
description | We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain asymptotic expansions for moments of these estimates. Numerical comparisons with exact data show that the use of asymptotic expansions significantly increases the accuracy of statistical inferences even for relatively small sample sizes. |
doi_str_mv | 10.1137/S0040585X97975678 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_914504486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2555172691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-69bbe9d89240e8c0b89a870adae75d682e2bf596899556c8b80da5c61c830ee73</originalsourceid><addsrcrecordid>eNplkE9LxDAUxIMoWFc_gLfgvfrSNsnLcVnWP7CioIK3kqav0MU2NcmC--3dst48zWF-zAzD2LWAWyFKffcGUIFE-Wm00VJpPGGZACNzXQhzyrLZzmf_nF3EuAUAVQiZMVzG_TAln3rH1z-THWPvx8g7H_gztb0d-TqmfrCJuO-45a822IEShUt21tmvSFd_umAf9-v31WO-eXl4Wi03uSs0pFyZpiHToikqIHTQoLGowbaWtGwVFlQ0nTQKjZFSOWwQWiudEg5LINLlgt0cc6fgv3cUU731uzAeKmsjKglVheoAiSPkgo8xUFdP4TA67GsB9fxP_e-f8hfC81da</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914504486</pqid></control><display><type>article</type><title>Asymptotic Expansions for Median Estimate of a Parameter</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Burnashev, M. V.</creator><creatorcontrib>Burnashev, M. V.</creatorcontrib><description>We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain asymptotic expansions for moments of these estimates. Numerical comparisons with exact data show that the use of asymptotic expansions significantly increases the accuracy of statistical inferences even for relatively small sample sizes.</description><identifier>ISSN: 0040-585X</identifier><identifier>EISSN: 1095-7219</identifier><identifier>DOI: 10.1137/S0040585X97975678</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Central limit theorem ; Estimates ; Noise ; Random variables ; Sample size</subject><ispartof>Theory of probability and its applications, 1997-01, Vol.41 (4), p.632-645</ispartof><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-69bbe9d89240e8c0b89a870adae75d682e2bf596899556c8b80da5c61c830ee73</citedby><cites>FETCH-LOGICAL-c270t-69bbe9d89240e8c0b89a870adae75d682e2bf596899556c8b80da5c61c830ee73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3185,27924,27925</link.rule.ids></links><search><creatorcontrib>Burnashev, M. V.</creatorcontrib><title>Asymptotic Expansions for Median Estimate of a Parameter</title><title>Theory of probability and its applications</title><description>We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain asymptotic expansions for moments of these estimates. Numerical comparisons with exact data show that the use of asymptotic expansions significantly increases the accuracy of statistical inferences even for relatively small sample sizes.</description><subject>Approximation</subject><subject>Central limit theorem</subject><subject>Estimates</subject><subject>Noise</subject><subject>Random variables</subject><subject>Sample size</subject><issn>0040-585X</issn><issn>1095-7219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LxDAUxIMoWFc_gLfgvfrSNsnLcVnWP7CioIK3kqav0MU2NcmC--3dst48zWF-zAzD2LWAWyFKffcGUIFE-Wm00VJpPGGZACNzXQhzyrLZzmf_nF3EuAUAVQiZMVzG_TAln3rH1z-THWPvx8g7H_gztb0d-TqmfrCJuO-45a822IEShUt21tmvSFd_umAf9-v31WO-eXl4Wi03uSs0pFyZpiHToikqIHTQoLGowbaWtGwVFlQ0nTQKjZFSOWwQWiudEg5LINLlgt0cc6fgv3cUU731uzAeKmsjKglVheoAiSPkgo8xUFdP4TA67GsB9fxP_e-f8hfC81da</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Burnashev, M. V.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19970101</creationdate><title>Asymptotic Expansions for Median Estimate of a Parameter</title><author>Burnashev, M. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-69bbe9d89240e8c0b89a870adae75d682e2bf596899556c8b80da5c61c830ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Approximation</topic><topic>Central limit theorem</topic><topic>Estimates</topic><topic>Noise</topic><topic>Random variables</topic><topic>Sample size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnashev, M. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theory of probability and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnashev, M. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Expansions for Median Estimate of a Parameter</atitle><jtitle>Theory of probability and its applications</jtitle><date>1997-01-01</date><risdate>1997</risdate><volume>41</volume><issue>4</issue><spage>632</spage><epage>645</epage><pages>632-645</pages><issn>0040-585X</issn><eissn>1095-7219</eissn><abstract>We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain asymptotic expansions for moments of these estimates. Numerical comparisons with exact data show that the use of asymptotic expansions significantly increases the accuracy of statistical inferences even for relatively small sample sizes.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0040585X97975678</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-585X |
ispartof | Theory of probability and its applications, 1997-01, Vol.41 (4), p.632-645 |
issn | 0040-585X 1095-7219 |
language | eng |
recordid | cdi_proquest_journals_914504486 |
source | LOCUS - SIAM's Online Journal Archive |
subjects | Approximation Central limit theorem Estimates Noise Random variables Sample size |
title | Asymptotic Expansions for Median Estimate of a Parameter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Expansions%20for%20Median%20Estimate%20of%20a%20Parameter&rft.jtitle=Theory%20of%20probability%20and%20its%20applications&rft.au=Burnashev,%20M.%20V.&rft.date=1997-01-01&rft.volume=41&rft.issue=4&rft.spage=632&rft.epage=645&rft.pages=632-645&rft.issn=0040-585X&rft.eissn=1095-7219&rft_id=info:doi/10.1137/S0040585X97975678&rft_dat=%3Cproquest_cross%3E2555172691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914504486&rft_id=info:pmid/&rfr_iscdi=true |