Asymptotic Expansions for Median Estimate of a Parameter

We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and its applications 1997-01, Vol.41 (4), p.632-645
1. Verfasser: Burnashev, M. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain asymptotic expansions for the distribution of a median (of empirical distribution) estimate of a parameter in additive noise with symmetric density. For Laplacian (i.e., two-sided exponential) density this estimate coincides with the maximum likelihood estimate. As a corollary we obtain asymptotic expansions for moments of these estimates. Numerical comparisons with exact data show that the use of asymptotic expansions significantly increases the accuracy of statistical inferences even for relatively small sample sizes.
ISSN:0040-585X
1095-7219
DOI:10.1137/S0040585X97975678